• Matéria: Matemática
  • Autor: nenitite
  • Perguntado 8 anos atrás

Com base na Integral por partes, determine f(x) = 2x lnx no intervalo (1, 2).

Respostas

respondido por: Anônimo
0

2 ∫ x * ln(x) dx


u =ln x ==> du=1/x dx


x dx = dv .... ∫ x dx = ∫ dv ==>x²/2 =v


∫ x * ln(x) dx = ln x * x²/2 - ∫ (x²/2)* 1/x dx


∫ x * ln(x) dx = ln x * x²/2 - (1/2)*∫ x dx


∫ x * ln(x) dx = ln x * x²/2 - x²/4


2 ∫ x * ln(x) dx = ln x*x² -x²/2 = (x²/2)* (2*ln(x) -1)


2

[(x²/2)* (2*ln(x) -1)] ≈

1


=(2 * (2*ln(2) -1) - (0,5 * (2*ln(1) -1)


=4 ln(2) - 2 +0,5


=2,7726 -2 +0,5 ≈ 1,2726



nenitite: EU QUERO ENTRAR EM CONTATO COM SORTILEJO... URGENTE
respondido por: CyberKirito
0

Caso esteja pelo app, e tenha problemas para visualizar esta resposta, experimente abrir pelo navegador https://brainly.com.br/tarefa/17104396

                                                       

            \Huge\boxed{\boxed{\boxed{\boxed{\sf Integral~\rm por~\tt partes}}}}

\huge\boxed{\boxed{\boxed{\boxed{\displaystyle\sf\int u\cdot dv=u\cdot v-\int v\cdot du}}}}

\displaystyle\sf\int 2x\ell nx~dx\\\underline{\rm fac_{\!\!,}a}~u=\ell nx\implies du=\dfrac{1}{x}dx\\\sf dv=2x~dx\implies v=x^2\\\displaystyle\sf\int 2x\ell nx~dx=\ell nx\cdot x^2-\int\diagup\!\!\!\!\!x^2\cdot\dfrac{1}{\diagup\!\!\!x}~dx\\\displaystyle\sf\int 2x\ell nx~dx=x^2\ell nx-\int x~dx\\\huge\boxed{\boxed{\boxed{\boxed{\displaystyle\sf\int 2x\ell nx~dx=x^2\ell nx-\dfrac{1}{2}x^2+k}}}}\blue{\checkmark}

\displaystyle\sf\int_1^2 2x\ell nx~dx=\bigg[x^2\ell nx-\dfrac{1}{2}x^2\bigg]_1^2\\\sf =2^2\ell n(2)-\dfrac{1}{2}\cdot2^2-\bigg[1^2\ell n1-\dfrac{1}{2}\cdot1^2\bigg]\\\sf 4\ell n(2)-2-0+\dfrac{1}{2}=\dfrac{8\ell n(2)-4-0+1}{2}\\\huge\boxed{\boxed{\boxed{\boxed{\displaystyle\sf\int_1^22x\ell n(x)~dx=\dfrac{8\ell n(2)-3}{2}}}}}\blue{\checkmark}

Perguntas similares