• Matéria: Matemática
  • Autor: BarbaraFonseca
  • Perguntado 9 anos atrás

Calcule o valor do logaritmo

Obs: a base é 1/4

Anexos:

Respostas

respondido por: Niiya
13
Lembre-se:

1/x^{n} = x^{-n}
 \sqrt[n]{x^{y}} = x^{y/n}
log_{(x^{n})}(a) = (1 / n) * log_{x} (a)
log_{(x)} (x) = 1
log_{(x)}(a) = n <=> x^{n} = a
_________________________________

log_{(1/4)} (2\sqrt{2}) =log_{(1/2^{2})} (2 \sqrt{2})
log_{(1/4)}(2 \sqrt{2})= log_{(2^{-2})}(2*2^{1/2})
log_{(1/4)}(2 \sqrt{2})= (1 / [-2]) * log_{(2)} (2^{1}*2^{1/2})
log_{(1/4)}(2 \sqrt{2})= - (1 / 2) * log_{(2)} (2^{1+1/2})
log_{(1/4)}(2 \sqrt{2})= - (1 / 2) * log_{(2)} (2^{3/2})
log_{(1/4)}(2 \sqrt{2})= - (1 / 2) * (3 / 2) * log_{(2)} 2
log_{(1/4)}(2 \sqrt{2})=- (3 / 4) * 1
log_{(1/4)}(2 \sqrt{2})=-3/4
_________________________________

Outro método:

log_{(1/4)} (2 \sqrt{2} ) = x
(1/4)^{x} = 2 \sqrt{2}
(1/2^{2})^{x} =  \sqrt{2*2^{2}}
(2^{-2})^{x} =  \sqrt{2^{3}}
2^{-2x} = 2^{3/2}

Bases iguais, iguale os expoentes:

-2x=3/2
2x=-3/2
2*2x=-3
4x=-3
x=-3/4
respondido por: Anônimo
4
1/4 x= 2raiz2
(1/4)^2 x= (raiz 8)^2
1/16 x= 8
1/2^4 x= 2^3
2^(-4) x= 2^3
- 4x = 3 .(-1)
4x = - 3
x = -3/4

logo:

log1/4 na base por (2raiz2) = - 3 / 4
Perguntas similares