Respostas
a)
solução unitária o Δ = 0
Δ=b²- 4*a*c =(-3k)² - 4 * (k+1) *(2k-1)=0
9k²-4*(2k²-k+2k-1) =0
9k²-8k²+4k-8k+4=0
k²-4k+4=0
k'=[4+√(16-16)]/2=4/2=2
k''=[4-√(16-16)]/2 =2
Sendo k=2:
(2+1)x²-3*2x+2*2-1=0
3x²-6x+3=0
x²-2x+1=0
(x-1)²=0 ==>x=1 é a resposta
b)
log₂ x + k * logₓ 2 = 2
log x /log 2 + k * log 2 /log x =2
multiplique tudo por log 2 * log x
log² x + k * log² 2 = 2* log2 * log x
Faça y = log x
y² + k * log² 2 = 2y* log 2
y² - 2y* log 2 + k * log² 2 = 0
************************************************
Δ=0
(-2*log 2)² -4 * 1 *k * log² 2 =0
4 log² 2 -4klog² 2=0
4-4k =0
4k=4 ==>k=1
**********************************************
sendo k=1
y² - 2y* log 2 + k * log² 2 = 0
y² - 2y* log 2 + log² 2 = 0 .....Δ=0
y'=y''=2 log 2 /2= log 2
y = log x
log 2 =log x ==>x=2