Respostas
Através do princípio fundamental da contagem podemos determinar o número total de agrupamentos ao lançarmos três moedas.
Como cada moeda pode produzir dois resultados distintos, três moedas irão produzir 2 . 2 . 2 resultados distintos, ou seja, poderão produzir 8 resultados distintos. Este é o nosso espaço amostral.
Dentre as 8 possibilidades do espaço amostral, o evento que representa todas as moedas com a mesma face para cima possui apenas 2 possibilidades, ou tudo cara ou tudo coroa, então a probabilidade será dada por:
A probabilidade das três moedas caírem com a mesma face para cima é igual a 1/4, ou 0,25, ou ainda 25%.
Sabemos que no lançamento de uma moeda , poderemos ter o resultado Cara ou Coroa , ou seja , 50% de chances de tirar Cara e 50% de chances de tirar Coroa.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
A questão quer saber , a probabilidade do lançamento das três moedas , saírem relutados iguais , ou seja , CaraCaraCara ou CoroaCoroaCoroa.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Iremos calcular a probabilidade de saírem 3 caras e depois a probabilidade de sair 3 coroas ( somente em ambas) .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
P(cara) = 1/2 × 1/2 × 1/2 = 1/8
P(coroa) = 1/2 × 1/2 × 1/2 = 1/8
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Como são duas possibilidade de chances ( cara ou coroa ) , multiplicando a probabilidade ( que são iguais ) por 2 .
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
1/8 × 2 = 2/8
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃
Simplificando o numerador e o denominador por 2 .
1/4 ou 25% de chances.
▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃▃