A interpretação muitas vezes é a Comentário do problema, a interseção de um plano com os eixos coordenados forma um tetraedro, descobrindo os pontos das interseções com os eixos coordenado, descobrimos também as dimensões do tetraedro, com as dimensões do tetraedro calculamos o seu volume. A interseção do plano Pi= 3x+2y-4z-12=0 com os planos coordenados forma um tetraedro. DETERMINE o valor do referido tetraedro?
Respostas
respondido por:
5
Vamos determinar a interseção entre o plano π: 3x + 2y - 4z - 12 = 0 e os planos coordenados.
Então, considere que:
x = 0 e y = 0 ⇒ z = -3
x = 0 e z = 0 ⇒ y = 6
y = 0 e z = 0 ⇒ x = 4
O volume do tetraedro é igual a um terço do produto da área da base pela altura.
A área da base do tetraedro formado é igual a:
Ab = 12 ua
A altura é igual a 3.
Portanto, o volume do tetraedro formado pela interseção do plano π: 3x + 2y - 4z - 12 = 0 com os planos coordenados é igual a:
V = 12 uv
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás