• Matéria: Matemática
  • Autor: Belinha151
  • Perguntado 8 anos atrás

????????????????????????????????

Anexos:

Respostas

respondido por: renatoaugustobh
1

Olá!

Vamos lá:

a)  \sqrt{2}  ·  \sqrt{18}  =

 \sqrt{(2  .  18)}  =  \sqrt{36}

b)  \frac{\sqrt{6}}{5}   ·  \frac{\sqrt{12}}{3}   =

 \frac{\sqrt{(6  .  12)}}{(5  .  3)}   =  \frac{\sqrt{72}}{15}

c)  \frac{\sqrt[5]{b^{3}}}{\sqrt{3}}     ·  \frac{\sqrt[5]{b^{2}}}{\sqrt{3}}     =

 \frac{\sqrt[5]{(b^{3}  .  b^{2})}}{\sqrt{(3  .  3)}}      =

 \frac{\sqrt[5]{b^{(3 + 2)}}}{\sqrt{9}}     =

 \frac{\sqrt[5]{b^{5}}}{3}    =  \frac{b}{3}

d)  \sqrt[3]{8^{4}}   ·  \sqrt[4]{8^{3}}   =

MMC(3,4) = 12

 \sqrt[12]{8^{[4  .  (12 : 3)]}}   ·  \sqrt[12]{8^{[3  .  (12 : 4)]}}   =

 \sqrt[12]{8^{16}}   ·  \sqrt[12]{8^{9}}   =

 \sqrt[12]{8^{16}  .   8^{9}}    =

 \sqrt[12]{8^{(16 + 9)}}   =  \sqrt[12]{8^{25}}

e)  \sqrt{\sqrt[3]{4}}   ÷  \sqrt[5]{\sqrt{2}}   =

 \sqrt[(2  .  3)]{4}  ÷  \sqrt[(5  .  2)]{2}  =

 \sqrt[6]{4}  ÷  \sqrt[10]{2}  =

MMC(6, 10) = 30

 \sqrt[30]{4^{5}}   ÷  \sqrt[30]{2^{3}}   =

 \sqrt[30]{(2^{2})^{5}}    ÷  \sqrt[30]{2^{3}}   =

 \sqrt[30]{2^{(2  .  5)}}   ÷  \sqrt[30]{2^{3}}   =

 \sqrt[30]{2^{10}}   ÷  \sqrt[30]{2^{3}}   =

 \sqrt[30]{(2^{10} : 2^{3})}    =

 \sqrt[30]{2^{(10 - 3)}}   =  \sqrt[30]{2^{7}}

f)  \sqrt{\sqrt{\sqrt{7^{3}}}}     ÷  \sqrt[4]{\sqrt{7}}   =

 \sqrt[4]{\sqrt{7^{3}}}    ÷  \sqrt[4]{\sqrt{7}}   =

 \sqrt[4]{(\sqrt{7^{3} : \sqrt{7}})}     =

 \sqrt[4]{\sqrt{(7^{3} : 7)}}    =

 \sqrt[4]{\sqrt{7^{(3 - 1)}}}    =

 \sqrt[4]{\sqrt{7^{2}}}    =  \sqrt[4]{7}

Abraços!

Perguntas similares