Na construção de edificios e monumentos,seja por propriedades estruturais ou por motivos estéticos,podemos observar a prsença de formas que se assemelham a uma parábola.Algumas pontes,por exemplo,apresentam em sua estrutura um arco em forma de parábola.
Esse arco pode ser representado matematicamente pela função y=0,0021x^2+1,0563x,na qual y representa a distância entre o nivel do rio e o arco, e x representa a distância em linha reta a partir de uma das extremidades do arco no nivel do rio, ambos expressos em metros
a) Supondo que uma pessoa escale a ponte representada no esquema,qual sera a maior altura que ela podera atingir,em relação ao nivel do rio?
B) Qual é a distância entre as extremidades do arco formado pela ponte,representada no esquema,no nível do rio?
Respostas
respondido por:
93
Sendo y = -0,0021x² + 1,0563x, temos então uma função do segundo grau com:
a = -0,0021
b = 1,0563
c = 0
a) Para calcular a altura máxima, utilizaremos o y do vértice, cuja fórmula é:
Sendo assim,
yv ≈ 132,83
Portanto, a maior altura que uma pessoa poderá atingir é de, aproximadamente, 132,83 metros.
b) Sendo y = -0,0021x² + 1,0563x, temos que:
-0,0021x² + 1,0563x = 0
Colocando o x em evidência:
x(-0,0021x + 1,0563) = 0
Logo,
x = 0
e
-0,0021x + 1,0563 = 0
1,0563 = 0,0021x
x = 503
Portanto, a distância entre as extremidades do arco é igual a 503 metros.
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás