Respostas
Para a propagação de uma onda, podemos usar o mesmo conceito para o cálculo da velocidade média:
Podemos deduzir a velocidade com que uma onda se propaga; para isso basta fazermos o quociente entre o espaço em que a onda percorre em função do tempo. Analisemos a figura acima, onde temos a propagação de uma onda. Nela podemos ver que enquanto o ponto C percorre um comprimento de onda, cada ponto da corda executa uma oscilação por completo.
Por esse motivo é que podemos dizer que o tempo gasto para percorrer um comprimento de onda é o próprio período T da onda. Desta forma, tomando como base a expressão acima, enquanto o ponto C percorre uma distância Δs = λ, o tempo gasto é Δt = T. Desta forma, a velocidade de propagação de uma onda é dada por:
Ou podemos escrever da seguinte forma, como T = 1/f, temos:
v=λ .f
Caso a fonte produtora da onda seja harmônica simples, o período e a frequência serão constantes. Assim, podemos dizer que a velocidade de propagação de uma onda numa corda é dada por:
Na equação acima temos que:
- F é a tensão na corda
- μ é a densidade linear da corda
Vejamos o seguinte exemplo: Suponha que uma onda possui frequência de 8 Hz e esteja se propagando com velocidade igual a 200 m/s. Determine o comprimento de onda da onda.
Retirando os dados fornecidos pelo exercício, temos: f = 8 Hz e v = 200 m/s, aplicando a equação fundamental das ondas, temos:
v=λ .f
200=λ .8 (λ=200/8) λ= 25m