• Matéria: Matemática
  • Autor: pa1979
  • Perguntado 7 anos atrás

Um veículo cujo valor à vista é R$ 42.000,00 está sendo financiado em 60 parcelas mensais e iguais, sob o regime de taxa de juros compostos de 2% a.m., tendo o início de seus pagamentos após 3 meses do ato da compra.

Assinale a alternativa que corresponde o valor das parcelas desse financiamento.

Selecione uma alternativa:
a)
R$ 1.112,75.

b)
R$ 1.752,01.

c)
R$ 1.701,25.

d)
R$ 1.012,57.

e)
R$ 1.257,10.

Respostas

respondido por: jalves26
4

As variáveis do problema são:

PV (valor presente) = 42000

i (taxa de juros) = 2% a.m. ⇒ 0,02 a.m.

n (número de parcelas) = 60 meses


Primeiramente, calculamos o coeficiente de financiamento pela seguinte fórmula:

CF =       i      

        1 - (1 + i)⁻ⁿ

CF =        0,02          

        1 - (1 + 0,02)⁻⁶⁰

CF =      0,02        

          1 - (1,02)⁻⁶⁰

CF =    0,02    

          1 - 0,30

CF = 0,02

        0,70

CF = 0,028


Como ele só iniciou o pagamento no terceiro mês, o montante é:

M = P.(1 + i)ⁿ⁻³


M = 42000.(1 + 0,028)²


M = 42000.1,0404

M = 43696,80


Valor da prestação

P = M · CF

P = 43696,80 · 0,028768

P≅ 1257,07


Alternativa E.

respondido por: manuel272
6

=> Estamos perante um exercício de uma Série Uniforme de Capitais ..Postecipada com carência


Podemos resolver este exercício de 2 formas:


1ª FORMA:

Utilizando o conceito de “Coeficiente de Financiamento” (CF) e aí temos de decompor a resolução “em partes”, a saber:

=> Calcular o CF para a parte “continua” da operação (período dos  pagamentos)

=> Capitalizar o Valor Inicial (á vista) para o “momento 3”    

E aqui não nos podemos esquecer que é uma série postecipada ..logo o período de capitalização NÃO É de 3 meses ..mas apenas de 2 meses

=> Por fim efetuar o cálculo entre o valor capitalizado e o CF  


2ª FORMA:

Abordar a questão de uma forma matematicamente mais correta ..ou seja abordar a questão como uma Série Uniforme de Pagamentos Postecipada com carência


1ª FORMA – RESOLUÇÃO:


O cálculo das parcelas será dado por:


PMT = VA(*) , CF


onde

PMT = Valor da parcela

VA(*) = Valor Atual, neste caso como existe um período de carência o  VA terá de ser capitalizado ao "momento 3" do financiamento

CF = coeficiente de Financiamento


como

CF = i/[1 - 1/(1 + i)ⁿ] ...onde i = 2% ..ou 0,02 (de 2/100)


donde resulta ..substituindo:

CF = 0,02/[1 - 1/(1,03)⁶⁰]

CF = 0,02/[1 - 1/(3,281031)]

CF = 0,02/(1 - 0,304782)

CF = 0,02/0,695218

CF = 0,028768 <= coeficiente de Financiamento


Capitalização do Valor á vista (VA) para o "momento 3" do financiamento VA(₃):


VA(₃) = VA . (1 + i)⁽ⁿ⁻¹⁾


onde

VA(₃) = Valor atual calculado ao "momento 3", neste caso a determinar

VA = Valor Atual, neste caso VA = 42000

n = número de períodos de capitalização, neste caso será "n - 1" ...porque é uma série postecipada (muito importante ter atenção a este pormenor)


Resolvendo:

VA(₃) = VA . (1 + i)⁽ⁿ⁻¹⁾

VA(₃) = 42000 . (1 + 0,02)⁽³⁻¹⁾

VA(₃) = 42000 . (1 + 0,02)²

VA(₃) = 42000 . (1,02)²

VA(₃) = 42000 . (1,0404)

VA(₃) = 43.696,80 <= Valor capitalizado ao "momento 3"


Retomando a nossa fórmula inicial para calculo das parcelas:

PMT = VA(*) , CF

..substituindo

PMT = 43.696,80 . 0,028768

PMT = 1.257,07 <= Valor das parcelas do financiamento

(note que não efetuamos nunca nenhum arredondamento ao longo do calculo pelo que podem haver diferenças de "centimos" em relação a alguns gabaritos)



2ª FORMA - Resolução:

Abordar a questão de uma forma matematicamente mais correta ..ou seja abordar a questão como uma Série Uniforme de Pagamentos Postecipada com carência


Temos a fórmula da Série de pagamentos Postecipada ...com carência:


PMT = VA . { [(1 + i)⁽ˣ⁻¹⁾ . i]/[1 - (1 + i)⁽⁻ⁿ⁾] }


Onde

PMT = Valor da parcela, neste caso a determinar

VA = Valor Atual (á vista), neste caso VA = 42000

i = Taxa de Juro da aplicação, neste caso i = 0,02

x = Período de carência, neste caso x = 3

n = Número de "ciclos" de pagamentos (número de parcelas), neste caso n = 60


Substituindo e resolvendo:  

PMT = VA . { [(1 + i)⁽ˣ⁻¹⁾ . i]/[1 - (1 + i)⁽⁻ⁿ⁾ ] }

PMT = 42000 . { [(1 + 0,02)⁽³⁻¹⁾ . 0,02]/[1 - (1 + 0,02)⁽⁻⁶⁰⁾ ] }

PMT = 42000 . { [(1,02)⁽²⁾ . 0,02]/[1 - (1,02)⁽⁻⁶⁰⁾ ] }

PMT = 42000 . { [(1,0404) . 0,02]/[1 - (0,304782) ] }

PMT = 42000 . [ (0,02808)/(0,695218) ]

PMT = 42000 . 0,02993

PMT = 1.257,07 <= valor de cada parcela do financiamento


(note que não efetuamos nunca nenhum arredondamento ao longo do calculo pelo que podem haver diferenças de "centimos" em relação a alguns gabaritos)



Espero ter ajudado



Camponesa: Excelente sua aula . Faltou apenas a video - aula !! Obrigada !!
Perguntas similares