• Matéria: Matemática
  • Autor: mile427
  • Perguntado 8 anos atrás

Em uma circunferência de 20 cm de raio, uma corda, de 24 cm de comprimento está a que distância do centro dessa circunferência?

Respostas

respondido por: teixeira88
2

Vamos chamar ao centro da circunferência de O e à corda de AB.

A distância do centro da circunferência até a corda é o segmento traçado pelo centro da circunferência até o ponto médio da corda, que vamos chamar de M.

Assim, temos um triângulo retângulo OMA, no qual:

OA = raio da circunferência (hipotenusa do retângulo)

MA = metade da corda (cateto do triângulo)

OM = distância pedida (cateto do triângulo)

Então, vamos aplicar o Teorema de Pitágoras para obter o cateto OM:

OA² = MA² + OM²

OM² = OA² - MA²

OM² = 20² - 12²

OM² = 400 - 144

OM² = 256

OM = √256

OM = 16

R.: A distância do centro da circunferência até a corda é igual a 16 cm.


Perguntas similares