em uma festa, todos os participantes cumprimentam-se. houve 66 apertos de mão. quantas pessoas havia na festa ?
Respostas
respondido por:
6
Resolução!
n ( n - 1 ) / 2 = 66
n ( n - 1 ) = 132
n^2 - n = 132
n^2 - n - 132 = 0
a = 1
b = - 1
c = - 132
∆ = (-1)^2 - 4 . 1 . (-132)
∆ = 1 + 528
∆ = 529
∆ =√529
∆ = 23
X ' = 1 + 23 / 2
X ' = 24 / 2
X ' = 12
X " = 1 - 23 / 2
X " = - 22 / 2
X " = - 11
como só podemos usar números positivos a festa tinha 12 pessoas para provar vamos usar uma combinação simples
C12,2 = 12 * 11 / 2!
C = 132 / 2
C = 66
resposta : havia 12 pessoas na festa
espero ter ajudado
n ( n - 1 ) / 2 = 66
n ( n - 1 ) = 132
n^2 - n = 132
n^2 - n - 132 = 0
a = 1
b = - 1
c = - 132
∆ = (-1)^2 - 4 . 1 . (-132)
∆ = 1 + 528
∆ = 529
∆ =√529
∆ = 23
X ' = 1 + 23 / 2
X ' = 24 / 2
X ' = 12
X " = 1 - 23 / 2
X " = - 22 / 2
X " = - 11
como só podemos usar números positivos a festa tinha 12 pessoas para provar vamos usar uma combinação simples
C12,2 = 12 * 11 / 2!
C = 132 / 2
C = 66
resposta : havia 12 pessoas na festa
espero ter ajudado
Perguntas similares
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás