• Matéria: Matemática
  • Autor: Jullianne2015
  • Perguntado 7 anos atrás

Em relação à função real, definida por f(x) = (k2 – 1)x + 2, analise e julgue cada um dos itens.

Respostas

respondido por: tatiecelio22pbpjb0
1

Uma função do segundo grau é possui um grafico em forma de parabola. Vemos que esta parabola é simetrica.  

Sendo simetrica, cosneguir observar que existe esse eixo de simetria que fica exatamente entre as duas raizes.  

Vamos partir da função f(x) dor formato f(x) = ax² + bx + c  

Por tanto, sendo f(x), o x do vertice está na media aritmética das duas raizes:  

vamos descobrir a formula:  

Xvertice = [x1 + x2]/2  

Xv = [(-b + √Δ)/2a + (-b - √Δ) / 2a ] / 2  

Xv = [-2b/2a ] / 2  

Xv = -b/2a  

Esta é a formula para você guardar: Na função do segundo grau, o x do vertice é dado por -b/2a  

Agora, caso você queira descobrir diretamente o Y do vertice (Y = f(x)), ja guarde direto essa:  

Yv = -Δ/4a  

Muitas vezes é mais facil descobrir o Xv e substituir na função para encontrar o Yv, ai depende da questão  

Vamos agora para a pergunta:  

Valor minimo para x = 1  

logo, x do vertice = 1  

-b/2a = 1  

-b = 2a  

Uma função do segundo grau é em forma de parabola, ok, ja sabemos disso, agora vamos para a concavidade: Se o termo que multiplica o x² for positivo, a concavidade é voltada para cima [Logo faz sentido falar em valor minimo]; caso o termo que multiplica o x² for negativo, a concavidade é voltada para baixo [Logo faz sentido falar em valor maixmo]  

Como é valor minimo para x = 1, a concavidade é para cima [ termo que multiplica o x² tem que ser positivo]  

k-1 > 0  

k > 1  

-b = 2a  

-(-k) = 2a  

k = 2a  

a = k-1  

k = 2(k-1)  

k = 2k - 2  

k = 2  

Resposta: V = { k ∈ R | k = 2}  



Perguntas similares