• Matéria: Matemática
  • Autor: beatriz2302
  • Perguntado 7 anos atrás

Uma urna contém duas peças defeituosas e três peças boas. Uma a uma as peças serão retiradas sem reposição e analisadas. O experimento será encerrado quando as peças defeituosas forem identificadas. Anota-se como resultado do experimento a sequência de peças boas e defeituosas analisadas. Determine o espaço amostral do experimento


EinsteindoYahoo: O espaço amostral é grande, temos que considerar
duas peças defeituosas R1 e R2 e 3 boas, coloquei
as possibilidades para RR e RBR....

Obs: o texto diz que as peças são identificadas , R1 é diferente R2

O espaço amostral tem 92 elementos....

RR ==>2*1=2 ==>(R1,R2) , (R2,R1)
RBR ==>2*3*1=6 ==>(R1,B1,R2),(R1,B2,R2),(R1,B3,R2),(R2,B1,R1),(R2,B2,R1),(R2,B3,R1)
RBBR ==>2*3*2*1=12
RBBBR =>2*3*2*1*2=12
BRR =>3*2*1=6
BRBR =>3*2*2*1=6
BRBBR =>3*2*2*1*1=12
BBRR ==>3*2*2*1=12
BBRBR =>3*2*2*1*1=12
BBBRR =>3*2*1*2*1 =12

Respostas

respondido por: Peterlauns
4

O espaço amostral será 2

E a probabilidade será 2/5

Portanto, terá 40% de chance de tirar uma peça defeituosa da urna

Perguntas similares