• Matéria: Matemática
  • Autor: Joziane2015
  • Perguntado 7 anos atrás

Por favor respondam!!!

Faça as multiplicações:<br /><br />a) <br /> \frac{x + 2}{x} \times \frac{x - 2}{2x} <br />b) <br /> \frac{a}{a + 2b} \times \frac{5ab}{a - 2b} <br />c) <br /


Joziane2015: Faça as multiplicações:

a)
[tex] \frac{x + 2}{x} \times \frac{x - 2}{2x} [/tex]
b)
[tex] \frac{a}{a + 2b} \times \fra...
https://brainly.com.br/tarefa/19677718?utm_source=android&utm_medium=share&utm_campaign=question
viniciusszillo: Boa tarde! O que significa "
"?
viniciusszillo: O que significa

?
Joziane2015: desculpa saiu errado
viniciusszillo: Então, o item a é x+2/x . x - 2/2x (uma multiplicação entre frações)?
Joziane2015: sim
viniciusszillo: O item b é também uma multiplicação entre frações?
Joziane2015: por veja minha pergunta anterior, já que está foi uma tentstiva de respostagem
Joziane2015: é A B e C
Joziane2015: mas a C não saiu

Respostas

respondido por: viniciusszillo
4

Boa tarde, Joziane! Seguem as respostas com algumas explicações.


Resoluções:

ITEM A:

(a)/(a+2b) . (5ab)/(a-2b) (Os parênteses foram colocados apenas para melhorar a visualização dos numeradores e dos denominadores. Multiplicam-se os numeradores entre si. Perceba que será aplicada na incógnita a a propriedade da multiplicação de potências de mesma base, que diz que se deve conservar a base (a) e somar os expoentes.)

5a¹⁺¹b/(a+2b) . (a-2b) =>

5a²b/(a+2b) . (a-2b) (Em relação aos numeradores, note que eles formam um produto notável denominado diferença de quadrados: (a+b)(a-b)=a²-ab+ab-b²=a²-b².)

5a²b/a² - 2ab + 2ab - 4b² => (Note que a soma dos termos destacados resultará em zero.)

5a²b / a² - 4b²


Resposta: O resultado de a/a+2b . 5ab/a-2b é 5a²b / a² - 4b²

________________________

ITEM B:

(x + 2/x) . (x - 2/2x) (Os parênteses foram colocados apenas para facilitar a visualização das frações.)

(x+2) . (x-2) / x . 2x (Inicialmente, será feita a multiplicação entre os denominadores. Perceba que será aplicada na incógnita x a propriedade da multiplicação de potências de mesma base, que diz que se deve conservar a base (a) e somar os expoentes.)

(x+2) . (x-2) / 2x¹⁺¹ =>

(x+2) . (x-2) / 2x²  (Em relação aos numeradores, perceba que eles formam um produto notável denominado diferença de quadrados: (a+b)(a-b)=a²-ab+ab-b²=a²-b².)

- 2x + 2x - 4 / 2x² (Note que a soma dos termos destacados resultará em zero.)

x² - 4 / 2x²


Resposta: O resultado de (x + 2/x) . (x - 2/2x) é x² - 4 / 2x².


Espero haver lhe ajudado e bons estudos!


viniciusszillo: Boa tarde, Joziane! Caso não tenha entendido alguma parte da resposta, pode perguntar e eu lhe esclareço.
Joziane2015: O item B eu entendi, obrigada!!! desculpa pela confusão.
Joziane2015: ah e a A também kkk
viniciusszillo: Como sempre faço nas minhas resposta, procurei também desta vez ser o mais explicativo possível.
viniciusszillo: Correção: Como sempre fiz nas minhas respostas, procurei também desta vez ser o mais explicativo possível.
Joziane2015: muito obrigada
Joziane2015: pode me ajudar com mais uma?
Joziane2015: (a/a-4) . (a^2-16/ax)
viniciusszillo: Na resposta, espero que não tenha sido difícil perceber os produtos notáveis e as propriedades de potenciação.
Perguntas similares