• Matéria: Matemática
  • Autor: sandrapriscyla
  • Perguntado 7 anos atrás

O conselho desportivo de uma escola é formado por 2 professores e 3 alunos. A essa vaga, candidataram-se 5 professores e 30 alunos. A quantidade de maneiras diferentes que esse conselho pode ser eleito é:

Respostas

respondido por: mariaconegero
1

como a ordem não importa é combinação

Cn,p= n!/ (n-p)! x p!

combinação dos professores

C5,2= 5! / (5-2)! X 2!

C5,2 = 10 maneiras

combinação dos alunos

C30,3=30! / (30-3)! X 3!

C30,3 = 4060 maneiras

o que resulta em: 40.600 maneiras totais

levando o princípio do "E" como multiplicador

nesse caso, sao 10 maneiras de professores E 4.600 alunos

respondido por: guilhermeRL
0

Bom Dia!

______________________________

  • O primeiro passo é verificar se a ORDEM do elementos importa ou não, essa definição classifica Arranjo simples ou combinação simples.

Lembre-se:

Arranjo simples → A ordem importa (A, B) ≠ (B, A)

Combinação simples → A ordem não importa → (A, B) = (B, A)

______________________________

Vamos usar os professores para descobrir se a ORDEM importa ou não.

> Existem duas vagas

Vamos supor que as pessoas que se candidataram foram; (A, B, C, D, E)

A → João

B → Maria

> Supondo que na seleção dentre os 5 candidatos, João e Maria sejam os selecionados.

Veja bem; (João e Maria) é o mesmo agrupamento que (Maria e João), ou seja, nesse caso a ORDEM não importa.

________________________________

A questão é de combinação simples.

________________________________

  • O enunciado pede a escolha de 2 professores dentro de 5 candidatos → C(5, 2)
  • O enunciado pede a escolha de 3 alunos dentro de 30 candidatos → (30, 3)

________________________________

Professores:

C(n,p)=n!/(n-p)!p!

C(5,2)=5!/(5-2)!2!

C(5,2)=5!/3!2!

C(5,2)=5×4×3!/3!2!

C(5,2)=20/2×1

C(5,2)=20/2

C(5,2)=10

________________________________

Alunos:

C(n,p)=n!/(n-p)!p!

C(30,3)=30!/(30-3)!3!

C(30,3)=30!/27!3!

C(30,3)=30×29×28×27!/27!3!

C(30,3)=30×29×28/3!

C(30,3)=24360/3×2×1

C(30,3)=24360/6

C(30,3)=4060

________________________________

  • A questão não quer exatamente a disposição de escolhas individuais, ou seja, Aluno-professor. Na verdade busca a quantidade total de maneiras dessa "equipe" está formado pelos seus 5 membros.

C(5,2)×C(30,3) → 10×4060 = 40.600 maneiras distintas

________________________________

Att;Guilherme Lima

Perguntas similares