• Matéria: Matemática
  • Autor: lininhakkpckx7q
  • Perguntado 7 anos atrás

As regras de derivação podem ser aplicadas tanto a funções de uma variável independente quanto a funções de mais de uma variável independente. Se a função for composta, ainda assim, é possível derivá-la e analisar a função nestas condições. Considere a seguinte função de x e y
F(X,Y)=13X+5Y-10

​Sendo x e y funções de uma variável t, na forma:
X(T)=5T Y(T)=3T²+2


​Tendo por objetivo encontrar a derivada da função f(x), assinale a alternativa que apresenta a derivada de f(x,y) calculada para t = 2.

Respostas

respondido por: GeBEfte
53

\frac{\partial f(x,y)}{\partial t}=\frac{\partial f(x,y)}{\partial x}.\frac{\partial x(t)}{\partial t}+\frac{\partial f(x,y)}{\partial y}.\frac{\partial y(t)}{\partial t}\\\\\frac{\partial f(x,y)}{\partial t}=\left(13\right).\left(5\right)+\left(5\right).\left(6t\right)\\\\\frac{\partial f(x,y)}{\partial t}=65+30t\\\\Para\;t=2:\\\frac{\partial f(t=2)}{\partial t}=125

respondido por: rickgrimes07
15

Resposta:

alguém aí faz o mapa de CDI? pago

Perguntas similares