Respostas
respondido por:
1
Resposta:
Explicação passo-a-passo:
Para que a expressão - x² + 12x - 32 não assuma valores negativo, o valores possíveis de x deverão fazer parte dos reais não negativos ().
Logo, deverá ser maior ou igual a zero.
- x² + 12x - 32 ≥ 0
Multiplicando ambos membros da equação por (-1):
x² - 12x + 32 ≤ 0
Δ = (-12)² - 4 · 1 · 32
Δ = 144 - 128
Δ = 16
x = (12 ± √16) ÷ 2
x = (12 + 4)÷ 2 ∴ x = 8
x' = (12 - 4)÷2 ∴ x' = 4
Testando:
x² -12x + 32 ≤ 0
8² - 12*8 + 32 ≤ 0
64 - 96 +32 ≤ 0
96 - 96 ≤ 0
0 ≤ 0
4² - 12*4 + 32 ≤ 0
16 - 48 + 32 ≤ 0
48 - 48 ≤ 0
0 ≤ 0
Realmente os valores encontrados são coerentes, pois, deveriam ser menor ou igual a zero, como são exatamente igual a zero, logo, estão corretos.
Perguntas similares
6 anos atrás
6 anos atrás
6 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás