Respostas
Resposta:
Explicação passo-a-passo:
(x + 3)(x - 1) =
x² - x + 3x - 3 =
x² + 2x - 3 = 0 a = 1 b = 2 c = -3
Δ = b² - 4ac
Δ = 2² - 4.1.(-3)
Δ = 4 + 12
Δ = 16
x = -b +- √Δ/2a
x = - 2 +- √16/2.1
x = - 2 +- 4/2
x' = - 2 + 4/2 = 2/2 = 1
x" = - 2 - 4/2 = -6/2 = 3
x² + 13 = 0 a = 1 b = 0 c = 13
Δ = b² - 4ac
Δ = 0² - 4.1.(13)
Δ = 0 - 52
Δ = - 52
Quando Δ < 0, não existe raízes reais
x² - 1 = 1
x² = 1 + 1
x² = 2
x = +-√2
x² - 2x = 0 a = 1 b = -2 c = 0
Δ = b² - 4ac
Δ = -2² - 4.1.0
Δ = 4 - 0
Δ = 4
x = -b +- √Δ/2a
x = -(-2) +- √4/2.1
x = 2 +- 2/2
x' = 2 + 2/2 = 4/2 = 2
x" = 2 - 4/2 = -2/2 = -1
x² + x - 6 = 0 a = 1 b = 1 c = -6
Δ = b² - 4ac
Δ = 1² - 4.1.(-6)
Δ = 1 + 24
Δ = 25
x = -b +- √Δ/2a
x = - 1 +- √25/2.1
x = - 1 +- 5/2
x' = - 1 + 5/2 = 4/2 = 2
x" = - 1 - 5/2 = -6/2 = 3
Resposta:
Explicação passo-a-passo:
(x + 3)(x - 1) =
x² - x + 3x - 3 =
x² + 2x - 3 = 0 a = 1 b = 2 c = -3
Δ = b² - 4ac
Δ = 2² - 4.1.(-3)
Δ = 4 + 12
Δ = 16
x = -b +- √Δ/2a
x = - 2 +- √16/2.1
x = - 2 +- 4/2
x' = - 2 + 4/2 = 2/2 = 1
x" = - 2 - 4/2 = -6/2 = 3
x² + 13 = 0 a = 1 b = 0 c = 13
Δ = b² - 4ac
Δ = 0² - 4.1.(13)
Δ = 0 - 52
Δ = - 52
Quando Δ < 0, não existe raízes reais
x² - 1 = 1
x² = 1 + 1
x² = 2
x = +-√2
x² - 2x = 0 a = 1 b = -2 c = 0
Δ = b² - 4ac
Δ = -2² - 4.1.0
Δ = 4 - 0
Δ = 4
x = -b +- √Δ/2a
x = -(-2) +- √4/2.1
x = 2 +- 2/2
x' = 2 + 2/2 = 4/2 = 2
x" = 2 - 4/2 = -2/2 = -1
x² + x - 6 = 0 a = 1 b = 1 c = -6
Δ = b² - 4ac
Δ = 1² - 4.1.(-6)
Δ = 1 + 24
Δ = 25
x = -b +- √Δ/2a
x = - 1 +- √25/2.1
x = - 1 +- 5/2
x' = - 1 + 5/2 = 4/2 = 2
x" = - 1 - 5/2 = -6/2 = 3