• Matéria: Matemática
  • Autor: kauan4616
  • Perguntado 7 anos atrás

a solucao da equacao x ao quadrado +2x +1 =0 é:
a 0
b 1
c -1
d nao tem raiz real

Respostas

respondido por: eversonbirth
1

Resposta:

-1 (c)

Explicação passo-a-passo:

Vamos então organizar a equação:

x^2 + 2x + 1 = 0

Agora, iremos seguir o processo de determinação das raízes dessa equação de segundo grau. Realizamos o delta e depois o chamado báskara.

Delta = b^2 - 4ac\\BASKARA = \frac{-b \frac{+}{} \sqrt{Delta}}{2a}

Sabemos que nessa equação, a = 1    b = 2     c = 1

Delta:

b^2 - 4ac\\2^2 - 4(1)(1)\\4 - 4 = 0

Se o delta for igual a zero(como nessa situação), iremos possuir 2 raízes iguais.

Báskara:

\frac{-b \frac{+}{} \sqrt{Delta}}{2a}\\

\frac{-2 \frac{+}{} \sqrt{0}}{2(1)}\\

x = 1



respondido por: Anônimo
1
vamos lá!


x^2+2x+1=0


∆=b^2-4.a.c

∆=(2)^2-4.(1).(1)

∆=4-4

∆=0

como a equação tem delta igual a zero teremos portanto duas raízes reais e iguais::


x'=x"=-2/2.(1)

x'=x"=-1

alternativa "C"


espero ter ajudado!

boa noite!

Anônimo: muito obrigado pela M.R
kauan4616: não á de que!
Perguntas similares