• Matéria: Matemática
  • Autor: WiseNath
  • Perguntado 7 anos atrás

(PUC-MG) - Se A=  \frac{2}{e^{ x} + e ^{ - x} } e B=  \frac{ {e}^{x} - \: {e}^{- x} }{ {e}^{x} \: + \: {e}^{- x} } ,  {a}^{2} + {b}^{2} é igual a:

a) 1
b) 2
c) 4
d) e
e)  {e}^{2}

Resolução, por favor!

Respostas

respondido por: DanJR
1

Resposta:

\boxed{\mathtt{a}}

Explicação passo-a-passo:

\\ \displaystyle \mathsf{a^2 + b^2 = \left ( \frac{2}{e^x + e^{- x}} \right )^2 + \left ( \frac{e^x - e^{- x}}{e^x + e^{- x}} \right )^2} \\\\\\ \mathsf{\qquad \ \quad = \frac{2^2}{(e^x + e^{- x})^2} + \frac{(e^x)^2 - 2 \cdot e^x \cdot e^{- x} + (- e^{- x})^2}{(e^x + e^{- x})^2}} \\\\\\ \mathsf{\qquad \ \quad = \frac{4}{(e^x + e^{- x})^2} + \frac{e^{2x} - 2 \cdot e^0 + e^{- 2x}}{(e^x + e^{- x})^2}} \\\\\\ \mathsf{\qquad \ \quad = \frac{4 + e^{2x} - 2 + e^{- 2x}}{(e^x + e^{- x})^2}} \\\\\\ \mathsf{\qquad \ \quad = \frac{e^{2x} + 2 + e^{- 2x}}{(e^x + e^{- x})^2}}

\displaystyle \\ \mathsf{\qquad \ \quad = \frac{(e^{x})^2 + 2 \cdot 1 + (e^{-x})^2}{(e^x + e^{- x})^2}} \\\\\\ \mathsf{\qquad \ \quad = \frac{(e^{x})^2 + 2 \cdot \left ( e^x \cdot e^{- x} \right ) + (e^{-x})^2}{(e^x + e^{- x})^2}} \\\\\\ \mathsf{\qquad \ \quad = \frac{\left ( e^x + e^{- x} \right )^2}{(e^x + e^{- x})^2}} \\\\\\ \mathsf{\qquad \ \quad = \left ( \frac{e^x + e^{- x}}{e^x + e^{- x}} \right )^2} \\\\\\ \mathsf{\qquad \ \quad = \left ( 1 \right )^2} \\\\\\ \boxed{\boxed{\mathsf{a^2 + b^2 = 1}}}


WiseNath: Muito obrigada mesmo!
DanJR: Não há de quê!
Perguntas similares