• Matéria: Matemática
  • Autor: haytrixgamer
  • Perguntado 7 anos atrás

a quantidade de termos da PA (5,8,... ,92)

Respostas

respondido por: rodrigowanderleioliv
5
PA = (5, 8, ..., 92)
r = 8 - 5 = 3

an = a1 + (n - 1) * r
92 = 5 + (n - 1) * 3
92 - 5 = (n - 1) * 3
87 = (n - 1) * 3
n - 1 = 87/3
n - 1 = 29
n = 29 + 1
n = 30

A quantidade de termos desta PA é igual a 30.

respondido por: viniciusszillo
0

Olá! Segue a resposta com algumas explicações.

(I)Interpretação do problema:

Da P.A. (5, 8, ..., 92), tem-se que:

a)trata-se de uma progressão aritmética (PA) finita, porque se sabe qual é o último termo, embora não se conheça a sua posição, a ordem em que ele se encontra na referida sequência;

b)primeiro termo (a₁), ou seja, o termo que ocupa a primeira posição:5

c)último termo (an): 92 (Chama-se último termo ou enésimo termo porque não se conhece a posição (a ordem) que ele ocupa na progressão.)

d)número de termos (n): ? (Embora não se saiba o seu valor, necessariamente se diz que será positivo e inteiro, porque não existe indicação de quantidade por meio de números negativos e de decimais.)

e)por meio da observação dos dois primeiros termos e do último da progressão fornecida, pode-se afirmar que a razão será positiva (afinal, os valores dos termos sempre crescem e, para que isso aconteça, necessariamente se deve somar um termo positivo, a razão, a um termo qualquer).

===========================================

(II)Determinação da razão (r) da progressão aritmética:

Observação 1: A razão (r), valor constante utilizado para a obtenção dos sucessivos termos, será obtida por meio da diferença entre um termo qualquer e seu antecessor imediato.

r = a₂ - a₁ ⇒

r = 8 - 5 ⇒

r = 3   (Razão positiva, conforme prenunciado no item e acima.)

===========================================

(III)Aplicação das informações fornecidas pelo problema e da razão acima obtida na fórmula do termo geral (an) da P.A., para obter-se o número de termos:

an = a₁ + (n - 1) . r ⇒

92 = 5 + (n - 1) . (3) ⇒

92 = 5 + 3n - 3 ⇒

92 = 2 + 3n ⇒        

92 - 2 = 3n  ⇒

90 = 3n ⇒

90/3 = n ⇒

30 = n ⇔               (O símbolo ⇔ significa "equivale a".)

n = 30

Resposta: O número de termos da P.A.(5, 8, ..., 92) é 30.

=======================================================

DEMONSTRAÇÃO (PROVA REAL) DE QUE A RESPOSTA ESTÁ CORRETA

→Substituindo n = 30 na fórmula do termo geral da PA e omitindo, por exemplo, o primeiro termo (a₁), verifica-se que o valor correspondente a ele será obtido nos cálculos, confirmando-se que o número de termos realmente corresponde ao afirmado:

an = a₁ + (n - 1) . r ⇒

92 = a₁ + (30 - 1) . (3) ⇒

92 = a₁ + (29) . (3) ⇒         (Veja a Observação 2.)

92 = a₁ + 87 ⇒

92 - 87 = a₁ ⇒

5 = a₁ ⇔                            (O símbolo ⇔ significa "equivale a".)

a₁ = 5                                 (Provado que n = 30.)

Observação 2: Na parte destacada, foi aplicada a regra de sinais da multiplicação: dois sinais iguais, +x+ ou -x-, resultam em sinal de positivo (+).

→Veja outras tarefas relacionadas à determinação do número de termos em progressão aritmética e resolvidas por mim:

https://brainly.com.br/tarefa/670560

brainly.com.br/tarefa/26069117

https://brainly.com.br/tarefa/17522185

brainly.com.br/tarefa/25629220

brainly.com.br/tarefa/25571370

brainly.com.br/tarefa/584446

brainly.com.br/tarefa/1081180

brainly.com.br/tarefa/9095594

https://brainly.com.br/tarefa/11535856

Perguntas similares