• Matéria: Matemática
  • Autor: TUBETUBEMAKER
  • Perguntado 7 anos atrás

qual a potência i²⁰¹⁹

urgentemente ​

Respostas

respondido por: albertrieben
0

Tarefa

qual a potência i²⁰¹⁹

Explicação passo-a-passo:

i^(0+k) = 1

i^(1+k) = i

i^(2+k) = -1

i^(3+k) = -i

agora

2019 = 2016 + 3

i^2019 = i^3 = -i

respondido por: solkarped
4

✅ Após resolver os cálculos, concluímos que o valor do número complexo procurado é:

        \LARGE\displaystyle\text{$\begin{gathered}\boxed{\boxed{\:\:\:\bf z = -i\:\:\:}}\end{gathered}$}

Seja o número complexo:

              \LARGE\displaystyle\text{$\begin{gathered} z = i^{2019}\end{gathered}$}

Para resolver esta questão devemos lembrar as seguintes propriedades da unidade imaginária "i":

              \LARGE\begin{cases} i^{0} = 1\\i^{1} = i\\i^{2} = -1\\i^{3} = -i\end{cases}

Se o número complexo dado pode se escrito como uma potência "P" de "i", ou seja:

                   \LARGE\displaystyle\text{$\begin{gathered} z = i^{P}\end{gathered}$}

Então, podemos reduzir esta potência à menor potência possível de "i" igualando "P" ao resto da divisão de "P" por "4", ou seja:

                   \LARGE\displaystyle\text{$\begin{gathered} z = i^{r}\end{gathered}$}

Para calcular este resto, devemos utilizar a seguinte fórmula:

        \LARGE\displaystyle\text{$\begin{gathered} r = P - 4\cdot\bigg\lfloor\frac{P}{4}\bigg\rfloor\end{gathered}$}

OBSERVAÇÃO:

A seguinte formula...

                       \LARGE\displaystyle\text{$\begin{gathered} \bigg\lfloor\frac{P}{4}\bigg\rfloor\end{gathered}$}

...representa o piso do quociente entre o valor de "P" e "4".

Desta forma, temos:

\LARGE\displaystyle\text{$\begin{gathered} \bf I\end{gathered}$}           \LARGE\displaystyle\text{$\begin{gathered} z = i^{P - 4\cdot\bigg\lfloor\dfrac{P}{4}\bigg\rfloor}\end{gathered}$}

Sendo:

                    \LARGE\displaystyle\text{$\begin{gathered} P = 2019\end{gathered}$}    

Substituindo o valor de "P" na equação "I", temos:

         \LARGE\displaystyle\text{$\begin{gathered} z = i^{2019 - 4\cdot\bigg\lfloor\dfrac{2019}{4}\bigg\rfloor}  \end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = i^{2019 - 4\cdot \lfloor504,75\rfloor}\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = i^{2019 - 4\cdot504}\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = i^{2019 - 2016}\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = i^{3}\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = i\cdot i\cdot i\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = i^{2}\cdot i\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = -1\cdot i\end{gathered}$}

             \LARGE\displaystyle\text{$\begin{gathered} = -i\end{gathered}$}

✅ Portanto, o valor do número complexo é:

        \LARGE\displaystyle\text{$\begin{gathered} z = -i\end{gathered}$}

\LARGE\displaystyle\text{$\begin{gathered} \underline{\boxed{\boldsymbol{\:\:\:Bons \:estudos!!\:\:\:Boa\: sorte!!\:\:\:}}}\end{gathered}$}

Saiba mais:

  1. https://brainly.com.br/tarefa/50983959
  2. https://brainly.com.br/tarefa/51159292
  3. https://brainly.com.br/tarefa/3032037
  4. https://brainly.com.br/tarefa/7995885
  5. https://brainly.com.br/tarefa/51970653
  6. https://brainly.com.br/tarefa/18275052
  7. https://brainly.com.br/tarefa/18261904
  8. https://brainly.com.br/tarefa/52494001
  9. https://brainly.com.br/tarefa/53215731
  10. https://brainly.com.br/tarefa/53214521
  11. https://brainly.com.br/tarefa/37676439
  12. https://brainly.com.br/tarefa/48661312
  13. https://brainly.com.br/tarefa/22274812
  14. https://brainly.com.br/tarefa/20812168
  15. https://brainly.com.br/tarefa/52130151

Anexos:
Perguntas similares