• Matéria: Matemática
  • Autor: LucasAMS
  • Perguntado 7 anos atrás

Simplificando tg(\dfrac{\pi }{20} ).tg(\dfrac{3\pi }{20} ).tg(\dfrac{5\pi }{20} ).tg(\dfrac{7\pi }{20} ).tg(\dfrac{9\pi }{20} ), obtém-se:


a) 1

b) -1

c) \dfrac{\sqrt{3} }{3}

d) \sqrt{3}

e) 0

Respostas

respondido por: jbsenajr
3

Resposta:

Explicação passo-a-passo:

Lembrando que

tg(\frac{\pi}{2}-\alpha)=cotg(\alpha)\\\\e\\cotg(\alpha)=\dfrac{1}{tg(\alpha)}=>cotg(\alpha).tg(\alpha)=1\\

Podemos escrever

tg(\dfrac{\pi}{20})=tg(\dfrac{10\pi-9\pi}{20})=tg(\dfrac{10\pi}{20}-\dfrac{9\pi}{20})=tg(\dfrac{\pi}{2}-\dfrac{9\pi}{20})=cotg(\dfrac{9\pi}{20})\\\\\\tg(\dfrac{3\pi}{20})=tg(\dfrac{10\pi-7\pi}{20})=tg(\dfrac{10\pi}{20}-\dfrac{7\pi}{20})=tg(\dfrac{\pi}{2}-\dfrac{7\pi}{20})=cotg(\dfrac{7\pi}{20})\\\\\\tg(\dfrac{5\pi}{20})=tg(\dfrac{\pi}{4})=1

substituindo na expressão inicial

cotg(\dfrac{9\pi}{20}).cotg(\dfrac{7\pi}{20}).1.tg(\dfrac{7\pi}{20}).tg(\dfrac{9\pi}{20})=\\\\\\rearrumando\\\\=cotg(\dfrac{9\pi}{20}).tg(\dfrac{9\pi}{20}).cotg(\dfrac{7\pi}{20}).tg(\dfrac{7\pi}{20})=1


LucasAMS: Obrigado pela resolução Jbsenajr!
jbsenajr: Ok
Perguntas similares