determine a fração geratriz de cada dízima periódica ( ME AJUDEMMMMM) rápido por favor preciso muito saber, (Coloque os cálculos por favor )
A) 3,888...
B) 0,252525...
C) 4,2343434...
D) 0,73555...
E) 2,4575757...
Respostas
respondido por:
1
A)
3,888...= X (I)
38,888...=10X (II)
II - I:
38,888... - 3,888...=10x-X
35=9x
x=35/9
B)
0,252525...=x (II)
2,525252...=10x
25,252525...=100x (II)
25,2525... - 0,2525... = 100x-x
25=99x
x=25/99
C)
4,23434343...=X
42,343434...=10X (I)
423,434343=100X
4234,343434...=1000X (II)
4234,3434... - 42,3434...=1000X - 10X
4192=990X
X=4192/990
X= 2096/495
D)
0,73555... = X
7,3555...= 10X
73,555... = 100X(I)
735,555...=1000X(II)
735,555... - 73,555... = 1000X - 100X
662=900X
X=662/900
X=331/450
E)
2,4575757...= X
24,575757...=10X (I)
245,7575...=100X
2457,5757...=1000X (II)
2457,5757... - 24,575757 =1000X - 10X
2433=990X
X=2433/990
X=811/330
Perguntas similares
6 anos atrás
6 anos atrás
9 anos atrás