• Matéria: Matemática
  • Autor: iaibrow
  • Perguntado 7 anos atrás

determine a fração geratriz de cada dízima periódica ( ME AJUDEMMMMM) rápido por favor preciso muito saber, (Coloque os cálculos por favor )

A) 3,888...
B) 0,252525...
C) 4,2343434...
D) 0,73555...
E) 2,4575757...​

Respostas

respondido por: abccba123321
1

A)

3,888...= X (I)

38,888...=10X (II)

II - I:

38,888... - 3,888...=10x-X

35=9x

x=35/9

B)

0,252525...=x (II)

2,525252...=10x

25,252525...=100x (II)

25,2525... - 0,2525... = 100x-x

25=99x

x=25/99

C)

4,23434343...=X

42,343434...=10X (I)

423,434343=100X

4234,343434...=1000X (II)

4234,3434... - 42,3434...=1000X - 10X

4192=990X

X=4192/990

X= 2096/495

D)

0,73555... = X

7,3555...= 10X

73,555... = 100X(I)

735,555...=1000X(II)

735,555... - 73,555... = 1000X - 100X

662=900X

X=662/900

X=331/450

E)

2,4575757...= X

24,575757...=10X (I)

245,7575...=100X

2457,5757...=1000X (II)

2457,5757... - 24,575757 =1000X - 10X

2433=990X

X=2433/990

X=811/330

Perguntas similares