• Matéria: Matemática
  • Autor: Anônimo
  • Perguntado 7 anos atrás

a altura relativa à base de um triângulo isóceles excede a base em 2 m. Determine a altura, se o perímetro é de 36 m

Respostas

respondido por: ana784965pcutkt
2

Resposta:

Explicação passo-a-passo:

Vamos chamar a base de "x", também vamos chamar a altura relativa à base de "h" e, por fim, vamos chamar os dois outros lados que são iguais de "L".

Como a altura relativa a base excede a base em 2 metros, temos que:

h = x + 2

Por Pitágoras, vamos determinar o valor dos lados "L":

L² = (x/2)² + h²

L² = (x/2)² + (x + 2)²

L² = x²/4 + (x² + 4x + 4)

L² = x²/4 + x² + 4x + 4

L² = (x² + 4x² + 16x + 16) / 4

L² = (5x² + 16x + 16) / 4

L = √( (5x² + 16x + 16) / 4 )

L = √(5x² + 16x + 16) / 2

Com o valor de "L" acima, e considerando o perímetro "P" do triângulo igual a 36, podemos determinar o valor da base "x".

L + L + x = P

2L + x = 36

2 * (√(5x² + 16x + 16) / 2) + x = 36

√(5x² + 16x + 16) = 36 - x

(√(5x² + 16x + 16) )² = (36 - x)²

5x² + 16x + 16 = 1296 - 72x + x²

5x² - x² + 16x + 72x + 16 - 1296 = 0

4x² + 88x - 1280 = 0    (÷4)

x² + 22x - 320 = 0    (÷4)

a = 1

b = 22

c = -320

Δ = b² - 4ac

Δ = 22² - 4 * 1 * (-320)

Δ = 484 + 1280

Δ = 1764

x' = (-b + √Δ) / 2a

x' = (-22 + √1764) / (2 * 1)

x' = (-22 + 42) / 2

x' = 20 / 2

x' = 10

x'' = (-b - √Δ) / 2a

x'' = (-22 - √1764) / (2 * 1)

x'' = (-22 - 42) / 2

x'' = (-64) / 2

x'' = -32

Como o valor de "x" é a base do triângulo, a medida "x = -32" não pode ser adequada. Portanto, temos que "x = 10" é a solução da equação, ou seja, a base do triângulo mede 10 m.


Anônimo: OBG!!!!
ana784965pcutkt: Por nd !!!
Perguntas similares