• Matéria: Matemática
  • Autor: AissaMachado
  • Perguntado 7 anos atrás

dada a função de f: R em R definida por f(x)= -3x+1, calcule f(-1/3) e f(1/9)​

Respostas

respondido por: Jacobewman
1

f(x)=-3x+1

Para o f(-1/3):

f(-1/3)= -3(-1/3)+1

f(-1/3)=1+1

f(-1/3)=2

Para o f(1/9):

f(1/9)= -3(1/9)+1

f(1/9)= -3/9+1

f(1/9)= -1/3+1

f(1/9)= -1/3+3/3

f(1/9)= 2/3

Bons estudos !

respondido por: TayMay
1

f \: (x) =  - 3x + 1 \\  f \: ( -  \frac{1}{3} ) =  - 3 \times ( -  \frac{1}{3} ) + 1 \\ f \: ( -  \frac{1}{3} ) =  -  \frac{3}{1}  \times ( -  \frac{1}{3} ) + 1 \\ f \: ( -  \frac{1}{3} ) =    \frac{3}{3}  + 1 \\ f \: ( -  \frac{1}{3} ) = 1 + 1 \\ f \: ( -  \frac{1}{3} ) = 2 \\  \\

f \: (x) =  - 3x + 1 \\ f \: ( \frac{1}{9} ) =  - 3 \times ( \frac{1}{9} ) + 1 \\ f \: ( \frac{1}{9} ) =  -  \frac{3}{1 }  \times ( \frac{1}{9} ) + 1 \\ f \: ( \frac{1}{9} ) =  -  \frac{3 \div 3}{9 \div 3}  + 1 \\ f \: ( \frac{1}{9} ) =  -  \frac{1}{3}  + 1 \\ f \: ( \frac{1}{9} ) =  -  \frac{1}{3}  +  \frac{1}{1}  \\ f \: ( \frac{1}{9} ) =  \frac{ - 1 + 3}{3}  \\ f \: ( \frac{1}{9} ) =  \frac{2}{3}

Perguntas similares