• Matéria: Matemática
  • Autor: goncalvesmilene526
  • Perguntado 7 anos atrás

Se sen = - √3/4 e π < a< 3π/2 ,entao qual o valor da tan é :
a) √3/6
b) √39/13
c) √2/2
d) - √39/6


goncalvesmilene526: Preciso do desenvolvimento do cálculo

Respostas

respondido por: Lukyo
1

Eleve ao quadrado o valor do seno:

    \mathsf{sen\,a=-\dfrac{\sqrt{3}}{4}}\\\\\\ \mathsf{sen^2\,a=\Big(\!-\dfrac{\sqrt{3}}{4}\Big)^2}\\\\\\ \mathsf{sen^2\,a=\dfrac{3}{16}}

Mas pela identidade trigonométrica fundamental, temos que

    sen² a = 1 − cos² a

Substituindo ficamos com

    \mathsf{1-cos^2\,a=\dfrac{3}{16}}\\\\\\ \mathsf{cos^2\,a=1-\dfrac{3}{16}}\\\\\\ \mathsf{cos^2\,a=\dfrac{16-3}{16}}\\\\\\ \mathsf{cos^2\,a=\dfrac{13}{16}}

    \mathsf{1-cos^2\,a=\dfrac{3}{16}}\\\\\\ \mathsf{cos^2\,a=1-\dfrac{3}{16}}\\\\\\ \mathsf{cos^2\,a=\dfrac{16-3}{16}}\\\\\\ \mathsf{cos^2\,a=\dfrac{13}{16}}\\\\\\ \mathsf{cos\,a=\pm\,\sqrt{\dfrac{13}{16}}}\\\\\\ \mathsf{cos\,a=\pm\,\dfrac{\sqrt{13}}{4}}

Como a é um arco 3º quadrante, o cosseno é negativo:

    \mathsf{cos\,a=-\,\dfrac{\sqrt{13}}{4}}

Calculando tg a:

    \mathsf{tg\,a=\dfrac{sen\,a}{cos\,a}}\\\\\\ \mathsf{tg\,a=\dfrac{~-\frac{\sqrt{3}}{4}~}{-\frac{\sqrt{13}}{4}}}\\\\\\ \mathsf{tg\,a=\dfrac{\sqrt{3}}{\diagup\!\!\!\! 4}\cdot \dfrac{\diagup\!\!\!\! 4}{\sqrt{13}}}\\\\\\ \mathsf{tg\,a=\dfrac{\sqrt{3}}{\sqrt{13}}}

Racionalizando o denominador:

    \mathsf{tg\,a=\dfrac{\sqrt{3}\cdot \sqrt{13}}{\sqrt{13}\cdot \sqrt{13}}}\\\\\\ \mathsf{tg\,a=\dfrac{\sqrt{3\cdot 13}}{(\sqrt{13})^2}}\\\\\\ \mathsf{tg\,a=\dfrac{\sqrt{39}}{13}\quad \longleftarrow\quad resposta:~alternativa~b).}

Bons estudos! :-)

Perguntas similares