• Matéria: Matemática
  • Autor: brunafernandaa
  • Perguntado 9 anos atrás

Construa uma circunferência com arcos de 10 em 10 graus e transforme essas unidades em radiano identificando suas simetrias.

Respostas

respondido por: AnneKarollyne
7
É só usar o transferidor para medir os arcos direitinho, marcando de 10 em 10 graus. Para transformar essas medidas em radianos basta multiplicar o valor do arco por π/180
10°=10π/180=π/18
20°=20π/180=π/9
30°=30π/180=π/6
40°=40π/180=2π/9
50°=50π/180=5π/18
60°=60π/180=π/3
70°=70π/180=7π/18
80°=80π/180=4π/9
90°=90π/180=π/2
100°=100π/180=5π/9
110°=110π/180=11π/18
120°=120π/180=2π/3
130°=130π/180=13π/18
140°=140π/180=7π/9
150°=150π/180=5π/6
160°=160π/180=8π/9
170°=170π/180=17π/18
180°=180π/180=π
190°=190π/180=19π/18
200°=200π/180=10π/9
210°=210π/180=7π/9
220°=220π/180=11π/9
230°=230π/180=23π/18
240°=240π/180=4π/3
250°=250π/180=25π/18
260°=260π/180=13π/9
270°=270π/180=3π/2
280°=280π/180=14π/9
290°=290π/180=29π/18
300°=300π/180==5π/3
310°=310π/180=31π/18
320°=320π/180=16π/9
330°=330π/180=11π/6
340°=340π/180=17π/9
350°=350π/180=35π/18
360°=360π/180=2π
os simétricos você encontra na circunferência.

Perguntas similares