• Matéria: Matemática
  • Autor: Sasakirize
  • Perguntado 7 anos atrás

GENTE ME AJUDEM PFF ISSO É PARA UM TRABALHO QUE VALE 30 PONTOS PFF
(G1 - ifal 2016) Girando, em uma volta completa,
um triângulo retângulo de catetos 3 cm e 4 cm, em
torno de seu cateto maior, teremos o sólido abaixo
com suas características:
a) pirâmide com área lateral 2
30 cm e volume
3
10 cm .
b) cone com área lateral 2
15 cm π e volume 3
12 cm . π
c) cone com área da base 2
16 cm π e volume
3
12 cm . π
d) pirâmide com área da base e área lateral iguais a
3
12 cm . π
e) cone com área da base e área lateral iguais a
3
15 cm . π

Respostas

respondido por: dougOcara
3

Resposta:

Alternativa b)

Explicação passo-a-passo:

Observe na figura que ao girar um triângulo retângulo, tendo como eixo um dos catetos, formamos um cone sólido.

Comparando o enunciado com a figura:

h = 4 cm => porque ele gira em torno do cateto maior, conforme enunciado

r = 3 cm

O volume de um cone:

V=1/3πr²h=1/3.π.3².4=12π cm³

A área lateral (Al) do cone:

Al=πrg

Onde g é chamada de geratriz que corresponde a hipotenusa do triângulo retângulo. Se o Δ tem um cateto de 3 cm é o outro de 4 cm a hipotenusa é:

Teorema de Pitágoras:

h²=3²+4²=9+16 =< h=g=√25=5 cm

Al=π.3.5 = 15π cm²

Anexos:
Perguntas similares