• Matéria: Matemática
  • Autor: lirielyou1445
  • Perguntado 7 anos atrás

Um projeto modelo implantado em uma cidade disponibiliza 1000 bicicletas aos usuários livremente, cada bicicleta possui um chip localizador com um número identificador de 1 a 1000. Duas bicicletas nunca tem o mesmo número identificador.
A probabilidade do número identificador de uma bicicleta, encontrada aleatoriamente entre as mil, não ter nenhum número 8 entre seus algarismos é?
a) 729/1000
b) – 729/1000
c) 81/1000
d) - 81/1000
e) 729/900

Respostas

respondido por: diegoreinaldo811
3

Resposta:

a) 729/1000

Pois como não podemos contar com um número da sequência 0, 1,2,3,4,5,6,7,8,9. Assim podemos seguir da seguinte maneira;

9×9×9=729

[tex] \dfrac{729}{1000}[\tex]

respondido por: julianevesferrpawbnq
2

Resposta:

A probabilidade de uma bicicleta não ter nenhum 8 em seu número identificador é de 729 a cada 1000.

Explicação passo-a-passo:

Precisamos identificar quantos números com o algarismo 8 existem entre 1 e 1000, então:

Entre e 1 e 100: existe 19 números (8, 18, 28, ..., 80-89, 98);

Entre 101 e 200: existem 19 números (108, 118, 128, ..., 180-189, 198);

Logo, para cada centena, existem 19 números com o algarismo 8, porém temos s números da centena 800. Ao todo existe 190 números com o algarismo 8 (19 MULTIPLICADO POR 10). Mas precisamos contar todos de 800 a 899, como já contamos os 19 números presentes em cada dezena, 100-19=81. 190+81=271. Então, a probabilidade é de 729 a cada 1000.

Perguntas similares