• Matéria: Matemática
  • Autor: fernanda74466
  • Perguntado 7 anos atrás

Encontre os valores dos elementos da matriz A 3x4
onde aij = i^2 + j^3​

Anexos:

Respostas

respondido por: GeBEfte
1

A~=~\left[\begin{array}{cccc}a_{11}&a_{12}&a_{13}&a_{14}\\a_{21}&a_{22}&a_{23}&a_{24}\\a_{31}&a_{32}&a_{33}&a_{34}\end{array}\right]\\\\\\\\A~=~\left[\begin{array}{cccc}1^2+1^3&1^2+2^3&1^2+3^3&1^2+4^3\\2^2+1^3&2^2+2^3&2^2+3^3&2^2+4^3\\3^2+3^3&3^2+2^3&3^2+3^3&3^2+4^3\end{array}\right]

A~=~\left[\begin{array}{cccc}1+1&1+8&1+27&1+64\\4+1&4+8&4+27&4+64\\9+1&9+8&9+27&9+64\end{array}\right]\\\\\\\\A~=~\left[\begin{array}{cccc}2&9&28&65\\5&12&31&68\\10&17&36&73\end{array}\right]

respondido por: Anônimo
1

Explicação passo-a-passo:

Essa é uma matriz retangular 3 x 4 (3 linhas e 4 colunas)

    A=\left[\begin{array}{ccc}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33} \end{array}\right\left\begin{array}{ccc}a_{14}\\a_{24}\\a_{34}\end{array}\right]

Se a_{ij}=i^{2}+j^{3}, então:

    a_{11}=1^{2}+1^{3}=1+1=2

    a_{12}=1^{2}+2^{3}=1+8=9

    a_{13}=1^{2}+3^{3}=1+27=28

    a_{14}=1^{2}+4^{3}=1+64=65

    a_{21}=2^{2}+1^{3}=4+1=5

    a_{22}=2^{2}+2^{3}=4+8=12

    a_{23}=2^{2}+3^{3}=4+27=31

    a_{24}=2^{2}+4^{3}=4+64=68

    a_{31}=3^{2}+1^{3}=9+1=10

    a_{32}=3^{2}+2^{3}=9+8=17

    a_{33}=3^{2}+3^{3}=9+27=36

    a_{34}=3^{2}+4^{3}=9+64=73

Daí,

          A=\left[\begin{array}{ccc}2&9&28\\5&12&31\\10&17&36\end{array}\right\left\begin{array}{ccc}65\\68\\73\end{array}\right]

Perguntas similares