Respostas
Resposta:
Os números considerados complexos são escritos acompanhados de uma parte imaginária. No complexo z = a + bi, temos que a parte imaginária é representada por bi. Considerando i a unidade imaginária, vamos determinar alguns valores de in
Explicação passo-a-passo:
Qualquer número elevado a zero será sempre 1, então:
i 0 = 1
Qualquer número elevado a 1 será ele mesmo, então:
i 1 = i
Conforme a regra dos números complexos:
i 2 = – 1
i 3 = i2 * i = (–1) * i = –i
i 4 = i2 * i2 = (–1) * (– 1) = 1
i 5 = i4 * i = 1 * i = i
i 6 = i5 * i = i * i = i2 = –1
i 7 = i6 * i = (–1) * i = – i
i 8 = i4 * i4 = 1 * 1 = 1
i9 = i8 * i = 1 * i = i
i10 =(i2)5 = (–1)5 = –1
A partir da potência i4 as outras vão se repetindo de 4 em 4, para calcularmos in (n um número inteiro qualquer), para calcularmos por exemplo a potência i343, iremos dividir o expoente n por 4. No caso do exemplo, iremos dividir 343 por 4, irá sobrar um resto r igual a 3, assim, podemos concluir que:
i n = i r
i 343 = i3, portanto i343 = – i
Exemplo 1
Aplicando as propriedades da potência, calcule (2 – 2i)6.
Podemos fatorar o expoente da seguinte forma:
[(2 – 2i)2]3 =
[22 – 2 * 2 * (2i) + (2i)2]3
[4 – 8i + 4i2]3 =
[4 – 8i + 4 * (–1)]3 =
[4 – 8i – 4]3 =
[– 8i]3 =
– 512 * i3 =
– 512 * (– i) =
+ 512i
Exemplo 2
Para calcularmos a seguinte soma: i1993 + i1994 + i1995, devemos dividir cada expoente por 4 utilizando da seguinte propriedade i n = i r.
Dividindo 1993 por 4, termos como resto 1; dividindo 1994 por 4, teremos resto 2; dividindo 1995 por 4, teremos resto 3, substituindo os expoentes 1993, 1994 e 1995 (aplicando a propriedade in = ir) pelos seus respectivos restos, teremos:
i1 + i2 + i3 =
i + (–1) + (–i) =
i – 1 – i =
– 1 + i – i =
– 1
Portanto, i1993 + i1994 + i1995 = –1.
Resposta:
Explicação passo-a-passo:
Devemos saber que i² = -1
i [9² + 2.9.2i + (2i)²] = i (81 + 36i + 4i²) = i [ 81 + 36i +4(-1)] = i ( 81 + 36i - 4) =
i( 77 + 36i) = 77i + 36i² = 77i + 36(-1) = -36 + 77i