Determine o vértice de cada função abaixo:
a) y = x² -2
b) y = x² - 4x + 13
c) y = 3x² + 8x
d) y = x² - 13
e) y = -x² - 14x - 45
f) y = 6x² + 7x - 5
g) y = -x²+ 2x - 1
h) y = 2x² – 5x + 2
i) y = 2x² - 6x + 5
j) 7 = x² + 4x + 4
Respostas
Resposta:
Explicação passo-a-passo:
O Vértice
a) y = x² -2
a=1
b=0
c=-2
Xv= -b/2a
Xv=-0/2*1
Xv=0
---
Yv=-(b²-4*ac)/4*a
Yv= -( -4*1*(-2))/4*1
Yv=-8/4
Yv= -2
V(0,-2)
b) y = x² - 4x + 13
a= 1
b= -4
c= 13
Xv= -(-4)/2*1
Xv=4/2
Xv=2
Yv= -(4²-4*1*13)/4*a
Yv= -(16 -52)/4
Yv= -( -36)/4
Yv=9
V(2,9)
c) y = 3x² + 8x
Xv= -8/2*3
Xv= -8/6
Xv= -4/3
Yv= -(8²)/4*3
Yv=-64/12
Yv= -16/3
V(-4/3 , -16/3)
d) y = x² - 13
Xv=0
Yv= -(-4*1*(-13)/4*1
Yv= - 13
V(0,13)
e) y = -x² - 14x - 45
a= -1
b= -14
c=-45
Xv= -( -14)/2*(-1)
Xv= - 7
Yv= - [(-14)²-4*(-1)*(-45)]/4*(-1)
Yv= - [196-180]/4*(-1)
Yv= -16/4
Yv= -4
V(-7, -4)
f) y = 6x² + 7x - 5
Xv= -7/12
Yv= - [(7²-4*6*(-5))]/4*6
Yv= - [(49+120)]/4*6
Yv= - 169/24
V(-7/12, -169/24)
g) y = -x²+ 2x - 1
Xv= -2/-2
Xv= 1
Yv= -[(4-4*(-1)*(-1)]4*(-1)
Yv= -[(4-4]/4*(-1)
Yv= -0/4*(-1)
Yv=0
V(1,0)
h) y = 2x² – 5x + 2
Xv= -(-5)/2*2
Xv= 5/4
Yv= -(25-4*2*2)/4*2
Yv= -(25-16)/8
Yv= -9/8
V(5/4, -9/8)
i) y = 2x² - 6x + 5
Xv= 6/4
Yv= -(36-4*2*5)/8
Yv= -(-4)/8
Yv=4/8
Yv=1/2
V(6/4,1/2)
j) 7 = x² + 4x + 4 7?????