• Matéria: Física
  • Autor: dudat
  • Perguntado 7 anos atrás

Em qual temperatura um termômetro graduado na escala fahrenheit e outro em Kelvin terão a mesma leitura?

Respostas

respondido por: rbgrijo
2

f-32/9 = k-273/5 ==> k=f

f-32/9 = f-273/5

9(f-273)= 5(f-32)

9f -2457 =5f-160

4f = 2297

f = 574,25° ✓

respondido por: jplivrosng
4

desenvolvendo a equação que relaciona Celsius com Fahrenheit e colocando que as leituras devem ser iguais, descobrimos que - 40°F=- 40°C

A escala Celsius é uma escala de temperatura baseada no ponto de fusão (transformação de gelo para água) e ponto de ebulição (transformação de água para vapor) da água na condição de pressão ao nível do mar.

Define-se a temperatura de fusão sendo zero graus Celsius e a temperatura de ebulição e definida sendo 100 graus celsius.

A escala de temperatura Fahrenheit possui outra história sobre como ela foi criada, mas o ponto que nos interessa é que:

em Fahrenheit (no nível do mar) , a fusão da água acontece em 32°F

Já a ebulição da água ocorre em 212°F

Temos então as seguintes igualdades:

Temos então as seguintes igualdades:32°F=0°C

Temos então as seguintes igualdades:32°F=0°C e

Temos então as seguintes igualdades:32°F=0°C e212°F=100°C

Converter uma temperatura de celsius para Fahrenheit é feita da seguinte forma:

Seja uma temperatura X que será medida e sejam  X_CA leitura em Celsius e  X_CA leitura em Fahrenheit.

(observação importante) . A temperatura e a leitura são coisas diferentes. A temperatura é real e não muda com a escala. O que muda é a leitura.(é a mesma coisa que medir a distancia em centímetros, em metros ou em pés)

Sabemos que as duas escalas de temperatura são escalas lineares.

Então podemos fazer a seguinte proporção da leitura da temperatura  X e as leituras das temperaturas da agua:

 \dfrac{X_C-0}{100-0} é a proporção da leitura  X_C em relação à água.

 \dfrac{X_F-32}{212-32} é a proporção da leitura  X_F em relação à água.

Como ambas representam a mesma temperatura real, elas devem ser iguais

 \dfrac{X_C-0}{100-0}= \dfrac{X_F-32}{212-32}

Assim podemos converter de celsius para farenheit e vice-versa.

Com a equação de conversão de uma leitura para a outra, podemos agora encontrar em que temperatura teremos as duas leituras iguais.

Para isto basta fazer  X_C=X_F e teremos a seguinte equação:

 \dfrac{X-0}{100-0}= \dfrac{X-32}{212-32}

Resolvendo esta equação, obteremos o resultado:

 \dfrac{X-0}{100-0}= \dfrac{X-32}{212-32}\\\\\\\dfrac{X}{100}= \dfrac{X-32}{180}\\\\\\\dfrac{X}{10}= \dfrac{X-32}{18}\\\\\\\18X=10X-320\\\\\\8X=-320\\\\\\X=\-dfrac{320}{8}=-40

O resultado é que - 40°F=- 40°C

Perguntas similares