• Matéria: Matemática
  • Autor: tindoco5450
  • Perguntado 7 anos atrás

Calcule o valor de cada expressão. (logaritmo)

Anexos:

Respostas

respondido por: marcelolima29
9

Resposta:

a)

( log_{2}(64)  +  log_{6}(36) ) -  log_{7}( \frac{1}{49} )  =  \\  (log_{2}( {2}^{6} )  +  log_{6}( {6}^{2} ))  -  log_{7}( {7}^{ - 2} )  =  \\ (6 + 2) - ( - 2) =  \\ 8 + 2 =  \\ 10

b)

 \frac{ log_{10}(1) }{ log10 }  =  \\   \frac{0}{1}  =  0

c)

 log_{4}( \frac{1}{256} )  -  log_{ \frac{1}{16} }(2)  =  \\  log_{4}( {4}^{ - 4}  )  -  log_{ {2}^{ - 4} }(2)  =  \\  - 4 - ( -  \frac{1}{4} ) =   \\  - 4 +  \frac{1}{4}  =  \\  -  \frac{15}{4}

d)

( log_{0.5}( \frac{1}{32} )  +  log_{3}( \sqrt{ \frac{1}{27} } ) ) .log_{ \sqrt{2} }(64)  =  \\  (log_{ {2}^{ - 1} }( {2}^{ - 5} )  +  log_{3}( {3}^{ \frac{ - 3}{2} } )) . log_{ {2}^{ \frac{1}{2} } }( {2}^{6} )  =  \\ (5   + \frac{ - 3}{2}) .12  =  \\60  -  \frac{36}{2}  =  \\ 60 - 18 =  \\ 42

e)

 \frac{ log_{4}(0.25) + 2 log_{2}( \sqrt{ 128}  )  }{  log( {1000} ) ^{2}  }  =  \\    \frac{ log_{4}( {4}^{ - 1} )  + 2  log_{2}( {2}^{ \frac{7}{2} } )  }{log_{}  {( {10}^{3} )}^{2} }  =  \\  \frac{ - 1 + 2. \frac{7}{2} }{9}  =  \\  \frac{ - 1 + 7}{9}   =  \\ \frac{6}{9}  =   \frac{2}{3}

f)

3 log_{10}( \frac{1}{1000} ) . log_{6}(1)  -  {7}^{ log_{7}(6) }  =  \\ 3 log_{10}( {10}^{ - 3} ) .0 -  {7}^{ log_{7}(6) }  =  \\ 0 - 6 =  \\  - 6

Perguntas similares