• Matéria: Matemática
  • Autor: eeeeeeeee
  • Perguntado 9 anos atrás

Determine a soma dos ângulos internos de um octógono convexo

Respostas

respondido por: MATHSPHIS
5
A soma das medidas dos ângulos internos de um polígono de "n" lados é calculada por:

S_n=180(n-3)  \\
\\
S_8=180(8-3)  \\
\\
S_8=180.5  \\
\\
\boxed{S_8=900^o}
respondido por: Math739
0

A soma dos ângulos internos de um polígono é dada pela fórmula:

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

Onde:

\Large\displaystyle\text{$\begin{gathered}  \begin{cases}  \sf S_i = soma \,dos\, \hat{a}ngulos \, internos=? \\  \sf n = n\acute{u}mero \,de\, lados  = 8\end{cases}\end{gathered}$}

Calculando a soma dos ângulos internos de um octógono pela fórmula temos que:

\Large\displaystyle\text{$\begin{gathered}  \sf S_i = (n - 2) \cdot180 {}^{ \circ} \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = (8 -2) \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 6 \cdot180 {}^{ \circ}  \end{gathered}$}

\Large\displaystyle\text{$\begin{gathered} \sf S_i = 1080 {}^{ \circ}  \end{gathered}$}

Portanto, a soma dos ângulos internos de um octógono é:

\Large\displaystyle\text{$\begin{gathered}  \boxed{ \boxed{\bf  1080  {}^{ \circ}  }} \end{gathered}$}

Perguntas similares