• Matéria: Física
  • Autor: josepedro9924
  • Perguntado 7 anos atrás

Em um determinado ambiente convivem duas espécies que desempenham o papel de predador (C) e de presa (H). As populações dessas espécies, em milhares de indivíduos, são dadas pelas seguintes equações: , em que t é o tempo em meses. Determine qual é a duração do ciclo de crescimento e decrescimento das populações, isto é, a cada quanto tempo as populações voltam, simultaneamente, a ter as mesmas quantidades de indivíduos de t = 0.

Respostas

respondido por: bryanavs
17

A duração do ciclo de crescimento e decrescimento das populações é de √2.π meses.

Vamos aos dados/resoluções:

Se C(t) = 1 + 1/2 . cos (√2.t + π/4) e ;  

H(t) = 1 + 1/2√2 . sen (√2 . t + π/4)

Essas são as populações de predador e presa, de acordo com as informações dadas, conclui-se que as populações voltam, simultaneamente a ter as mesmas quantidades de indivíduos de t = 0, após um ciclo (em meses) que representa o período das duas funções, portanto, após :

T = 2π/√2 = √2.π

Logo então, o resultado final é de √2.π meses.

espero ter ajudado nos estudos, bom dia :)

Perguntas similares