Respostas
Resposta:
x=1
Explicação passo-a-passo:
Temos que:
raiz((raiz(5)+1)/(raiz(5)-1)) + raiz((raiz(5)-1)/(raiz(5)+1)) =
(5x)/(25^(1/4))
raiz((raiz(5)+1)/(raiz(5)-1) . (raiz(5)+1)/(raiz(5)+1)) + raiz((raiz(5)-1)/(raiz(5)+1) . (raiz(5)+1)/(raiz(5)+1)) =
(5x)/(25^(1/4))
raiz( (raiz(5)+1)^2 / (raiz(5)^2 -1^2) ) + raiz( (raiz(5)^2 -1^2) / (raiz(5)+1)^2 ) =
(5x)/(25^(1/4))
raiz((raiz(5)+1)^2)/raiz(raiz(5)^2 -1^2) + raiz(raiz(5)^2 -1^2)/raiz((raiz(5)+1)^2) =
(5x)/(25^(1/4))
(raiz(5)+1)/raiz(5-1) + raiz(5-1)/(raiz(5)+1) = (5x)/(25^(1/4))
(raiz(5)+1)/raiz(4) + raiz(4)/(raiz(5)+1) = (5x)/(25^(1/4))
(raiz(5)+1)/2 + 2/(raiz(5)+1) = (5x)/((5^2)^(1/4))
(raiz(5)+1)/2 + 2/(raiz(5)+1) = (5x)/(5^(2/4))
(raiz(5)+1)/2 + 2/(raiz(5)+1) = (5x)/(5^(1/2))
(raiz(5)+1)/2 + 2/(raiz(5)+1) = (5x)/raiz(5) . raiz(5)/raiz(5)
(raiz(5)+1)/2 + 2/(raiz(5)+1) = (5x).raiz(5)/5
(raiz(5)+1)/2 + 2/(raiz(5)+1) = x.raiz(5)
x= (raiz(5)+1)/(2. raiz(5)) + 2/((raiz(5)+1).raiz(5))
x= raiz(5)/(2. raiz(5)) + 1/(2. raiz(5)) + 2/(raiz(5)^2 + raiz(5))
x= 1/2 + (1/2).(1/raiz(5)) + 2/(5 + raiz(5))
x= 1/2 + (1/2).(1/raiz(5)).(raiz(5)/raiz(5)) + 2/(5 + raiz(5))
x= 1/2 + (1/2).(raiz(5)/5) + 2/(5 + raiz(5))
x= 1/2 + raiz(5)/10 + 2/(5 + raiz(5))
x= (5+raiz(5))/10 + 2/(5+raiz(5))
x= [(5+raiz(5))^2 + 20] / 10.(5+raiz(5))
x= [25 + 10.raiz(5) + 5 + 20] / 10.(5+raiz(5))
x= [50 + 10.raiz(5)] / 10.(5+raiz(5))
x= 10.(5+raiz(5)) / 10.(5+raiz(5))
x=1
Blz?
Abs :)
Explicação passo-a-passo:
Racionalizar as raízes