• Matéria: Matemática
  • Autor: 255AnaCaroline
  • Perguntado 9 anos atrás

Me ajude por favor só são 03 questões !!!!!!!!!

Anexos:

Respostas

respondido por: ScreenBlack
1
35) Vamos isolar a variável, para ver se os resultados serão os mesmos entre as equações:

a)\\ 1^a: x-8=6\\
1^a: x=6+8\\\\
1^a: x=14\\
2^a: x =14\\\\\ (\ equivalentes\ )

b)\\
1^a: 2y-1=y\\
1^a: 2y-y=1\\
1^a: y=1 \\\\
2^a: 3y=-6\\
2^a: y=\frac{-6}{3}\\
2^a: y=-2\\\\
3^a: y+2=5\\
3^a: y=5-2\\
3^a: y=3\\\\
(\ n\~ao\ s\~ao\ equivalentes\ )

c)\\
1^a: 4z+1=z+7\\
1^a: 4z-z=7-1\\
1^a: 3z=6\\
1^a: z=\frac{6}{3}\\
1^a: z=2\\\\
2^a: 3z=6\\
2^a: z=\frac{6}{3}\\
2^a: z=2\\\\
3^a: z=2\\\\
(\ equivalentes\ )

d)\\
1^a: 2a+a=12\\
1^a: 3a=12\\
1^a: a=\frac{12}{3}\\
1^a: a=4\\\\
2^a: 2a=6\\
2^a: a=\frac{6}{2}\\
2^a: a=3\\\\
3^a: a=3\\\\
(\ apenas\ 2^a\ e\ 3^a\ s\~ao\ equivalentes\ )



36) Multiplicando por 5 em ambos os lados da equação, a equação resultante será:

5\times3x=5 \times 8\\\\
\boxed{15x=40}



37) Para resolver a questão, precisamos igualar os lados da equação (balança):

OBS: Explicarei de forma mais detalhada para a balança 1. Para a balança 2, o processo será o mesmo.

lado\_esquerdo=lado\_direito\\\\ balan\c{c}a\ 1:\\\\  x+x+x+3+3=x+x+3+3+3+3\\\\ \boxed{3x+6=2x+12}\\\\ encontrando\ valor\ de\ x:\\\\ 3x-2x=12-6\\\\ \boxed{x=6}

verificando\ os\ pesos\ para\ os\ lados\ da\ balan\c{c}a.\\ utilizando\ a\ equa\c{c}\~ao\ inicial,\ e\ trocando\\ trocando\ o\ valor\ de\ x:\\\\ 3(6)+6=2(6)+12\\\\ 18+6=12+12\\\\ \boxed{24=24\ (\ os\ lados\ s\~ao\ iguais\ )}


lado\_esquerdo=lado\_direito\\\\ balan\c{c}a\ 2:\\\\ x+x+3+3=x+3+3+3+3\\\\ \boxed{2x+6=x+12}\\\\ 2x-x=12-6\\\\ \boxed{x=6}\\\\ validando\ a\ igualdade\ utilizando\ valor\ de\ x:\\\\ 2x+6=x+12\\\\ 2(6)+6=(6)+12\\\\ 12+6=6+12\\\\ \boxed{18=18\ (s\~ao\ iguais\ )}

Espero ter ajudado.
Bons estudos!
Perguntas similares