• Matéria: Matemática
  • Autor: alinypedagogia
  • Perguntado 9 anos atrás

O volume de um tetraedro cujas arestas representam os vetores u, v e w, é dado pela equação:

V = 1/6 . |u ^ v x w|.

Assim, o volume do tetraedro de arestas (2, 0, 0), (0, 3, 0) e (0, 0, 4) é:

Escolha uma:
a. 4
b. |(2, 3, 4)|
c. 24
d. 6


FernandoSilva250: a. 4
FernandoSilva250: Resposta correta

Respostas

respondido por: LuanaSC8
3
Volume do tetraedro  = 1/6 do produto misto.

|  2  0  0  2  0  |
|  0  3  0  0  0  |
|  0  0  4  0  4  |

(2*3*4)+(0*0*0)+(0*0*4) - (0*3*0)+(0*0*2)+(4*0*0) ⇒

V= \frac{1}{6} *24\to V= \frac{24}{6} \to V=4


R.: Alternativa A) 4.
Perguntas similares