• Matéria: Física
  • Autor: ljmelopes9
  • Perguntado 7 anos atrás

Tarefa 4
Uma das questões a ser avaliada para a instalação de um painel fotovoltaico, seja em uma residência
ou em uma grande empresa, consiste no estudo dos custos e das vantagens, no campo financeiro,
para esse tipo de investimento. Assim, é de fundamental importância a avaliação dos benefícios que
podem ser obtidos a partir da instalação desse tipo de sistema. Nesse sentido, para essa tarefa, vocês
deverão fazer um estudo teórico envolvendo o custo-benefício associado à implementação desse
tipo de sistema, o qual pode ser adaptado para diferentes situações, desde que conhecidas as
condições associadas.
Representando a potência recebida do sistema associado ao painel fotovoltaico por ݌ ,medida em
KW, e o custo-benefício correspondente por ܿ, dado em reais por KW, temos que a relação entre
essas duas variáveis pode ser descrita a partir de uma equação diferencial ordinária na forma:
݀ܿ
(ܿ − ߚ)ߙ = ݌݀
em que ܿ é dado em função de ݌ ,enquanto ߙ e ߚ estão associados ao tipo de sistema a ser instalado.
Com base nessas informações, responda:
PRODUÇÃO TEXTUAL
INTERDISCIPLINAR
EM GRUPO – PTG
Engenharias
a) Qual é a classificação da equação diferencial ordinária apresentada? Classifique-a em relação
ao tipo, à ordem e à linearidade.
b) Qual é a solução da equação diferencial apresentada? Apresente com detalhes o processo de
resolução, evidenciando a estratégia utilizada nesse processo, adotando ߙ e ߚ como
constantes reais.
c) Considerando que ܿ(0) = ܿ଴ e que ܿ଴ < ߚ ,como vocês descreveriam o perfil da solução para
a equação diferencial encontrado no item B, considerando as variações de potência recebida
e custo-benefício? Justifique sua resposta.
d) Que interpretação vocês dariam para a relação do custo-benefício em função da potência
gerada, com base no contexto e na solução obtida no item B? Justifique sua resposta

Respostas

respondido por: Anônimo
0

Analisando por meio de métodos de soluções de equações diferenciais ordinárias, podemos facilmente resolver esta questão.

Então temos a seguinte EDO:

\frac{dc}{dp}=\alpha(\beta-c)

Então vamos as questões:

a) Qual é a classificação da equação diferencial ordinária apresentada? Classifique-a em relação ao tipo, à ordem e à linearidade.

Esta é uma equação diferencial ordinária linear de primeira ordem (só possui uma ordem de derivada e é de resolução linear) do tipo separável (pode ser resolvida por separação de variáveis).

b) Qual é a solução da equação diferencial apresentada? Apresente com detalhes o processo de resolução, evidenciando a estratégia utilizada nesse processo, adotando e como constantes reais.

Para resolver, basta separarmos as variáveis:

\frac{dc}{dp}=\alpha(\beta-c)

\frac{dc}{(\beta-c)}=\alpha.dp

Agora basta integrarmos os dois lados, o esquerdo em c e o direito em p:

-Ln(\beta-c)=\alpha.p+K

Onde K é uma constante de integração. Assim podemos elevar os dois lados em potencia de "e":

\beta-c=e^{-\alpha.p+K}

Como exponencial de constante também é uma constante qualquer, então:

\beta-c=K.e^{-\alpha.p}

E esta é a nossa solução geral.

c = \beta-K.e^{-\alpha.p}

c) Considerando que (0)= e que <, como vocês descreveriam o perfil da solução para a equação diferencial encontrado no item B, considerando as variações de potência recebida e custo-benefício? Justifique sua resposta.

Você não copiou corretamente esta pergunta, porém podemos ver pela solução geral que este custo depende exponencialmente de p.

d) Que interpretação vocês dariam para a relação do custo-benefício em função da potência gerada, com base no contexto e na solução obtida no item B? Justifique sua resposta.

Temos que pela solução, quanto maior a potencia, mais o custo, porém chega um momento que o custo se aproxima de um valor fixo Beta, pois exponencial negativa tende a 0 com o aumento de p.

Perguntas similares