Respostas
Resposta:
Mediana:
Imagine um triângulo ABC qualquer. Por A, traça-se uma ceviana que toca o triângulo em BC. Seja M, o ponto da ceviana em BC, dessa maneira, essa ceviana será mediana se, e somente se, o lado BM for igual ao lado MC (BM=MC). Em outras palavras, a mediana liga um vértice do triângulo ao ponto médio do lado oposto.
Altura:
Seja ABC um triângulo qualquer. Por A, traça-se uma reta que toca o lado BC em H. Essa ceviana será altura se, e somente se, for perpendicular à reta suporte do lado oposto ao vértice da extremidade. Em outras palavras, se formar um ângulo de 90° com BC.
Bissetrizes:
Bissetriz interna:
Seja ABC um triângulo qualquer. Por A, traça-se uma ceviana que toca o lado BC em Q. Essa ceviana será bissetriz interna se, e somente se, o ângulo BÂQ, for igual ao ângulo CÂQ.
Bissetriz externa:
Seja ABC um triângulo qualquer. Externamente a A, traça-se uma reta P. Mais uma vez, por A, traça-se externamente uma porção semi-reta que termina em D. Suponha que D percence ao prolongamento de AC, e, a partir de A e P, pertence ao prolongamento de BC. AP será bissetriz externa se, e somente se, o ângulo PÂB, for igual ao ângulo PÂD.
Curiosidade:
Se por A, você traçar uma bissetriz interna, você terá que o ângulo o entre as duas bissetrizes é reto, ou seja, forma 90°.
Resposta:
só para mim poder fazer uma pergunta!
Explicação passo-a-passo: