Respostas
Resposta:
Explicação passo-a-passo:
1) a) 0 = 0
b) 1 = 1
c) 4x3x2x1= 24
d)5x4x3x2x1=120
e) 2x1 + 3x2x1 = 2 + 6 = 8
f) 1 + 4x3x2x1 = 1 + 24 = 25
g) 3x2x1 - 2x1 = 6-2 = 4
h) 0 + 1 = 1
i) (2x1) x (3x2x1) = 2x6 = 12
j) (0) x (5x4x3x2x1) = 0x120 = 0
k) {(3x2x1) + (5x4x3x2x1)} ÷ (3x2x1) = {6 + 120} ÷ 6 = 126 ÷ 6 = 21
l) (4x3x2x1) x (2x1) = 24 x 2 = 48
2)a) 8!/ 9x8! = 1/9
b) 15x14x13!/13! = 15x14 = 210
c) 4!/ 6x5x4! = 1/6x5 = 1/30
d) 6x5!/5! x 2x1 = 6/2 = 3
e) 8x7x6!/ 4x3x2x1 x 6! = 8x7/4x3x2x1 = 56/24 = 7/3
f) 2 + 4x3x2x1 / 4x3x2x1x4x3x2x1 = 2 + 24 / 576 = 25/ 576
3)a) n x (n-1)! / (n-1)! = n
b) x × (x-1)! × (x-2)! / (x-2)! = x × (x-1)!
c) (n+1) x n!/ n! = n+1
d) (2x+2) x (2x+1) x (2x)! / (2x)! = (2x+2) x (2x+1)
e) x × (x-1)! × (x+2)×(x+1)! / (x-1)!(x+1)! = x × (x+2)
f) acho que não dá para simplificar essa.
4)a) (n+1)x(n)x(n-1)! / (n-1)! = 12
(n+1) x n = 12
n² + n - 12 = 0
bhaskara:
n = -b ±√Δ/2
Δ = 1 -4 × 1 × -12
Δ = 1 + 48
Δ = 49
n = -1 ±√49/2
n1 = -1 + 7/2
n1 = 6/2
n1 = 3
n2 = -1 -7/2
n2 = -8/2
n2 = - 4
b) n x (n-1) x (n-2)! / (n-2)! = 20
n x (n-1) = 20
n² - n -20 = 0
bhaskara:
n = -b ±√Δ/2
Δ = 1 -4 × 1 × -20
Δ = 1 + 80
Δ = 81
n = + 1 ±√81/2
n1 = 1+ 9/2
n1 = 10/2
n1 = 5
n2 = 1 -9/2
n2 = -8/2
n2 = -4
c) (n-1)! x (n+2) x (n+1)!/ n x (n-1)! x (n+1)! = 2
n + 2 / n = 2
n + 2 = 2n
2n - n = 2
n = 2
Resposta:
Explicação passo-a-passo: