Respostas
Oiee Emily
Equação Biquadrada
x ⁴ - 3 x ² - 18 = 0
→ substituindo x ² por p
(x ² ) ² - 3 x ² - 18 = 0
p² - 3 p - 18 = 0 → equação do 2' grau ( p )
Δ = b² - 4 . a . c a = 1 b = - 3 c = - 18
Δ = ( - 3 ) ² - 4 . 1 . ( - 18 )
Δ = 9 + 72
Δ = 81
p = - b ± √Δ / 2 . a
p = - ( - 3 ) ± √81 / 2 . 1
p = 3 ± 9 / 2
p ' = 3 + 9 / 2 = 12 / 2 = 6
p '' = 3 - 9 / 2 = - 6 / 2 = - 3
⇒ As raízes 6 e - 3 são os valores da incógnita ; x² = p . Para acharmos os valores de x na equação biquadrada, fazemos a raiz quadrada de p' e p'' .
Assim temos :
Para p ' ⇔ x² = 6 ⇔ x = ± √6 = ± √6
Para p '' ⇔ x² = - 3 ⇔ x = ± √ - 3 = Não há raízes reais para números negativos.
⇒ S { - √6 e √6 }