Obtenha a equação geral da reta (t) que passa pelo ponto A(5,2) e é paralela a reta (r) de equação 4x-y+18=0
Respostas
respondido por:
0
A equação da reta t é 4x - y - 18 = 0.
A equação geral de uma reta é da forma ax + by = c.
Queremos definir a equação da reta paralela à reta r: 4x - y + 18 = 0.
O vetor normal da reta t será múltiplo do vetor normal da reta r.
Então, temos que a reta t é da forma t: 4x - y = c.
Para calcularmos o valor do termo independente c, vamos utilizar a informação de que a reta t passa pelo ponto A = (5,2).
Substituindo esse ponto na equação 4x - y = c, obtemos:
4.5 - 2 = c
20 - 2 = c
c = 18.
Portanto, podemos concluir que a equação da reta t é igual a t: 4x - y - 18 = 0.
Perguntas similares
5 anos atrás
5 anos atrás
8 anos atrás
8 anos atrás
8 anos atrás
9 anos atrás
9 anos atrás
9 anos atrás