• Matéria: Matemática
  • Autor: wyze
  • Perguntado 9 anos atrás

Determine a soma das raízes da equação:

 \frac{16^x + 64}{5} = 4^{x+1}

Respostas

respondido por: korvo
5
E aeee mano,

use as propriedades da exponenciação..

\boxed{(a^m)^n~\to~a^{m\cdot n}~\to~a^{mn}}\\\\
\boxed{a^{m+n}~\to~a^m\cdot a^n}

 \dfrac{16^x+64}{5}=4^{x+1}\\\\
(4^2)^x+64=5\cdot4^x\cdot4^1\\
(4^x)^2+64=20\cdot4^x\\
(4^x)^2-20\cdot4^x+64=0\\\\
\Delta=b^2-4ac\\
\Delta=(-20)^2-4\cdot1\cdot64\\
\Delta=400-256\\
\Delta=144\\\\
4^x=\dfrac{-(-20)\pm \sqrt{144} }{2\cdot1}= \dfrac{20\pm12}{2}\begin{cases}4^{x'}= \dfrac{20-12}{2}= \dfrac{8}{2}=4\\\\
4^{x''}= \dfrac{20+12}{2}= \dfrac{32}{2}=16\end{cases}

Então..

4^{x'}=4~~~~~~~~~~~~~~~4^{x''}=16\\
4^{x'}=4^1~~~~~~~~~~~~~~4^{x''}=4^2\\
\not4^{x'}=\not4^1~~~~~~~~~~~~\not4^{x''}=\not4^2\\\\
x'=1~~~~~~~~~~~~~~~~~x''=2\\\\
A~soma~das~raizes...\\\\
x'+x''=1+2\\\\
\huge\boxed{\boxed{x'+x''=3}}

Tenha ótimos estudos ;D

wyze: Valeuu ;D
korvo: Y FLW
Perguntas similares