• Matéria: Matemática
  • Autor: AliceGaspar1618
  • Perguntado 7 anos atrás

Quantos numeros de tres algarismos distintos podemos formar usando :
a) apenas os algarismos 1,2e3?
b) apenas os algarismos impares?
c) apenas os algarismos pares?
d) algarismos pares e impares intercalados?

Respostas

respondido por: Thais42
14

Resposta:

a) Como os algarismos tem que ser distintos e temos 3 algarismos possíveis, a saber 1,2 e 3, então para o algarismo das centenas temos 3 possibilidades (pode ser 1, 2 ou 3); para o algarismo das dezenas restam apenas 2 possibilidades, pois um dos algarismos já foi usado nas centenas e o exercício pede que sejam distintos; e por fim para o algarismo das unidades, sobra uma única possibilidade. Pelo princípio multiplicativo, para que as três coisas ocorram, existem 3*2*1=6 possibilidades.

b) Os algarismos ímpares são 1,3,5,7 e 9. Sendo assim, temos 5 algarismos ímpares. Para o algarismo das centenas temos então 5 possibilidades. Como um algarismo já foi usado nas centenas e os algarismos devem ser distintos, restam 4 possibilidades para o algarismo das dezenas. Aplicando este mesmo raciocínio, sobram 3 possibilidades para o algarismo das unidades. Pelo princípio multiplicativo, são 5*4*3=60 possibilidades.

c) Os algarismos pares são 0, 2, 4, 6 e 8. Como queremos números de 3 algarismos, então não podemos começar com zero, do contrário teria apenas 2 algarismos. Sendo assim, para as centenas temos 4 possibilidades ( 5 pares menos o zero); para as dezenas restam 4 possibilidades, pois agora o zero pode entrar e já escolhemos um algarismo para as centenas. De modo análogo, restam 3 possibilidades para as unidades. Portanto, pelo princípio multiplicativo temos 4*4*3=48 possibilidades.

d) Temos 5 algarismos pares e 5 ímpares. Separamos em dois casos:

i) O primeiro algarismo é ímpar

Para as centenas são 5 possibilidades. Agora nas dezenas deve aparecer um número par. Como o primeiro escolhido foi ímpar, não há perigo de ser repetido. Logo, temos 5 possibilidades. Para as unidades, deve ser um ímpar. Como já tínhamos escolhido um ímpar para as centenas e os algarismos devem ser distintos, temos 4 possibilidades. Pelo princípio multiplicativo, são 5*5*4=100 possibilidades.

ii) O primeiro algarismo é par

Como o número não pode começar com zero, temos então 4 possibilidades para as centenas. Para as dezenas, devemos escolher um ímpar, e portanto, temos 5 possibilidades. Agora para as unidades deve ser par, mas agora o zero pode entrar, então restam 4 possibilidades. Pelo princípio multiplicativo, são 4*5*4=80 possibilidades.

respondido por: CyberKirito
2

a)

 3.2.1=6 algarismos distintos.

b) temos 5 possibilidades para o terceiro dígito

4 para o primeiro dígito e 3 para o segundo dígito.

 4×3×5=60 algarismos distintos

c)

4.4.3=48

d)

Se o primeiro algarismo for ímpar temos

5.5.4=100

Se o primeiro for par temos

4.5.4=80

Perguntas similares