• Matéria: Matemática
  • Autor: jemussejonasjohane
  • Perguntado 7 anos atrás

por exemplo,f(2) =1.quanto vale f(f(...(f(f(4)))...)) 2019 vezes
A.1 B.2 C.3 D.4​

Respostas

respondido por: Anônimo
1

Utilizando definições de aplicações sucessivas de funções podemos discutir a resolução da função acima de diferentes formas.

Explicação passo-a-passo:

A respostas desta função depende, pois o enunciado esta incorreto, veja abaixo dois exemplos que eu dei de como ela seria possível resolver e verique se o que esta faltando no seu enunciado.

Exemplo Possível 1:

Esta questão está sem duvidas incompleta, seria necessario nó minimo mais 2 valores da função, ou talvez o que você tenha tentadizer, seja:

f(x) = 1

Se este for o caso, então a resposta é sempre 1, não importa quantas vezes você aplique, uma funçã oque é sempre igual a 1, vai ser sempre igual a 1, independente da variavel que você atribua a ela, pois esta é uma função constante.

Exemplo Possível 2:

Porém se este não for o caso, seria necessario algum informação adicional do tipo:

f(4) = 2

f(2) = 1

f(1) = 4

Para pelo menos assim criarmos um ciclo dentro destas 2019 aplicações.

Vou considerar esta ultima que eu mostrei acima, pois ela é a mais plausivel.

Se funcionar desta forma como eu descrevi, a cada três aplicações ele volta ao inicio, vejamos:

f(f(f(4))) = f(f(2)) = f(1) = 4

Ou seja, sabemos que 2019 é divisivel por 3:

2019 / 3 = 673

Então aplicar esta função 2019, vezes é a mesma coisa que repetir este ciclo 673 vezes, logo, o resultado é que ele volta a ser igual 4.

Perguntas similares