• Matéria: Matemática
  • Autor: Thiagonobre790
  • Perguntado 7 anos atrás

Simplifique a expressão : 2^n+4 - 2×2^2n/2×2^n+3

Respostas

respondido por: CyberKirito
5

\frac{{2}^{n+4}-2.{2}^{2n}}{2.{2}^{n+3}}

\frac{{2}^{n}.{2}^{4}-{2}. {2}^{n}.{2}^{n}}{{2}^{n}. {2}^{4}}

 \frac{\cancel{{2}^{n}}({2}^{4}-2.{2}^{n})}{\cancel{{2}^{n}}.{2}^{4}}

\frac{16-{2}^{n+1}}{16}

 \frac{16}{16}-\frac{{2}^{n+1}}{16}

1-\frac{{2}^{n+1}}{{2}^{4}}

1-{2}^{n+1-4}

 \boxed{\boxed{\frac{{2}^{n+4}-2.{2}^{2n}}{2.{2}^{n+3}}=1-{2}^{n-3}}}

respondido por: mithie7552
4

Resposta:

A expressão correta é assim

{2^{n+4}-2.2^{n}\over2.2^{n+3}}=\\ \\ desmembrando\\ \\ {2^n.2^4-2.2^n\over2.2^n.2^3}=\\ \\ {2^n.2^4-2.2^n\over2^4.2^n}=\\ \\ colocar~~ 2^n~~como~~fator~~comum\\ \\ {2^n(2^4-2)\over2^n.2^4}=\\ \\ Cancelar~~2^n\\ \\ {(2^4-2)\over2^4}={(16-2)\over16}={14\over16}={7\over8}

Perguntas similares