• Matéria: Matemática
  • Autor: nayanetorres97
  • Perguntado 7 anos atrás

Integral indefinida x^2 (3+x)^-4

Respostas

respondido por: CyberKirito
0

integral indefinida

<strong>\boxed{\int f(x)dx=g(x)+k} </strong>

\int {x}^{2}{(3+x)}^{-4}dx=\int \frac{{x}^{2}}{{(3+x)}^{4}}dx

faça

u=x+3 \\ x=u-3 \\ du=dx

\int \frac{{x}^{2}}{{(3+x)}^{4}}dx=\int \frac{{(u-3)}^{2}}{{u}^{4}}du

\int \frac{{(u-3)}^{2}}{{u}^{4}}du\\ \int {u}^{-4}({(u-3)}^{2})du\\\int {u}^{-4} ({u}^{2}-6u+9)du

\int ({u}^{-2}-6{u}^{-3}+9{u}^{-4})du\\=-\frac{1}{u}-\frac{3}{{u}^{2}}-\frac{3}{{u}^{3}}+k

\int {x}^{2}{(3+x)}^{-4}dx\\=-\frac{1}{x+3}-\frac{3}{{(x+3)}^{2}}-\frac{3}{{(x+3)}^{3}}+k

Perguntas similares